Commit cfe5464c authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent fa1c7186
Pipeline #14768 canceled with stage
#### Chapter 4
### Metallic waveguides
<br>
#### 1 - Introduction
#### 4.1 - Introduction
We propose to study in this chapter the conditions for propagation of
elm radiation in conductive rectangular waveguides and to identify the
......@@ -10,7 +12,7 @@ main char- acteristic of this kind of propagation. We will introduce a
"practical approach" based on the previous chapter's results.
#### 2 - Practical approach
#### 4.2 - Practical approach
We have seen in the previous chapter that the oblique incidence of
plane waves on planar conductive materials gives rise to an
......@@ -19,7 +21,7 @@ that the resulting wave has propagating character along the z axis
and a standing wave pattern along the y axis.
![](TE-and-TM-waves-1_L1200.jpg)
_TE and TM waves and their corresponding standing wave behaviour along the y axis._
_Figure 4.1 : TE and TM waves and their corresponding standing wave behaviour along the y axis._
* For TE modes (TE = transverse-electric) we have :
......@@ -112,11 +114,11 @@ simplicity only the case of TE modes.
![](rectangular_waveguide_with_a_TE_mode.jpg)
_Rectangular waveguide with a TE mode._
_Figure 4.2 : Rectangular waveguide with a TE mode._
<br>
#### 3 $`\mathbf{TE}`$ modes
#### 3 TE modes
##### Mode numbering
......@@ -215,7 +217,7 @@ $`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}}
It is a dispersive medium.
![](dispersion-relation-for-a-mode_temp_L1200.jpg)
_Fig. 4.4: The geometric interpretation of the dispersion._
_Fig. 4.4 : The geometric interpretation of the dispersion._
Similarly we obtain for the group velocity:
......@@ -224,7 +226,7 @@ $`v_{\varphi}=\dfrac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2
__Geometrical interpretation__
![](geometrical-interpretation-of-the-dispersion_temp_L1200.jpg)
_Fig. 4.5: The geometric interpretation of the dispersion._
_Fig. 4.5 : The geometric interpretation of the dispersion._
We can understand the propagating behaviour of the $`TE`$ wave using a
simple interpretation:
......@@ -235,7 +237,7 @@ simple interpretation:
progression) and $`v_g=0`$. In regions close to $`\omega_c`$ the
waveguides is highly dispersive.
* For $`\omega\longrightarrow\infty\,,k_z\longrightarrow\frac{\omega}{c},\theta\longrightarrow\pi/2`$
* For $`\omega\longrightarrow\infty\,,k_z\longrightarrow\frac{\omega}{c}\,\theta\longrightarrow\pi/2`$
and $`v_g\longrightarrow c`$.
The $`TE`$ waves tends to have very large incidence angles and the guide
behaves essentially as vacuum, i.e. dispersionless.
......@@ -247,20 +249,20 @@ simple interpretation:
<br>
where $`\lambda_z=\lambda / \sin\theta`$ and $`\lambda_y=\lambda / \cos\theta`$, or again
<br>
$`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{n}{\2b}\big)^2}`$
$`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{n}{2b}\big)^2}`$
<br>
from which it is easy to confirm (see definition of $`\omega_c`$) that the
cut-off wavelength for a $`TE_{0,n}`$ mode is $`\lambda_c=\frac{2b}{n}`$
![](variation-phase-group-velocity-wersus-omega-guided-mode_temp_L1200.jpg)
_Fig. 4.6: The phase and group velocity variations vs angular frequency for a guided mode._
_Fig. 4.6 : The phase and group velocity variations vs angular frequency for a guided mode._
!!!!! *Exercice 4.1 : Refractive index*
!!!!! Calculate and plot the refractive index vs the angular frequency for a $`TE`$ wave.
#### 4. Power flow
#### 4.4 - Power flow
The power density (power per unit surface, units $`[W:m^2]`$)
traversing the waveguide can be evaluated from the time-averaged
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment