Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
d168440e
Commit
d168440e
authored
Apr 27, 2024
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
fc752b6a
Pipeline
#18247
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
10 deletions
+13
-10
cheatsheet.fr.md
...es-stationary-electric-field/20.overview/cheatsheet.fr.md
+13
-10
No files found.
12.temporary_ins/10.electrostatics-vacuum/20.causes-stationary-electric-field/20.overview/cheatsheet.fr.md
View file @
d168440e
...
...
@@ -768,12 +768,12 @@ figure à faire
<br>
*$`
\m
athbf{
\b
oldsymbol{E_M}}
`$*
$`
\d
isplaystyle
\;
=
\d
frac{
\d
ens^{2D}
\,
z_M}{4
\p
i
\,\e
psilon_0}
\
t
imes
\
c
dot
\i
nt_{
\v
arphi=0}^{2
\p
i} d
\v
arphi
\
t
imes
\
c
dot
\i
nt_{
\r
ho=0}^{R}
\r
ho
\,
(
\r
ho^2+z_M^2)^{
\,
-3/2}
\,
d
\r
ho
`$
<br>
*$`
\d
isplaystyle
\b
oldsymbol{
\m
athbf{
\h
space{1.5 cm}=
\d
frac{
\d
ens^{2D}
\,
z_M}{2
\,\e
psilon_0}
\
t
imes
\i
nt_{
\r
ho=0}^{R}
\r
ho
\,
(
\r
ho^2+z_M^2)^{
\,
-3/2}
\,
d
\r
ho}}
`$*
*$`
\d
isplaystyle
\b
oldsymbol{
\m
athbf{
\h
space{1.5 cm}=
\d
frac{
\d
ens^{2D}
\,
z_M}{2
\,\e
psilon_0}
\
c
dot
\i
nt_{
\r
ho=0}^{R}
\r
ho
\,
(
\r
ho^2+z_M^2)^{
\,
-3/2}
\,
d
\r
ho}}
`$*
* L'intégration sur la variable $`
d
\r
ho
`$ donne :
...
...
@@ -800,15 +800,18 @@ figure à faire
<br>
$`
\d
isplaystyle
\h
space{1cm} =
\d
frac{
\d
ens^{2D}
\,
z}{2
\e
psilon_0}
\l
eft(
\d
frac{1}{
\s
qrt{z^2}} -
\d
frac{1}{
\s
qrt{R^2+z^2}}
\r
ight)
`$
<br>
$`
\d
isplaystyle
\h
space{1cm} =
\d
frac{
\d
ens^{2D}
\,
z}{2
\e
psilon_0}
\l
eft(
\d
frac{1}{|z|} -
\d
frac{1}{
\s
qrt{R^2+z^2}}
\r
ight)
`$
<br>
Ainsi le champ électrique s'exprime plus simplement :
*$`
\d
isplaystyle
\m
athbf{
\b
oldsymbol{
\h
space{1cm} =
\d
frac{
\d
ens^{2D}
\,
z}{2
\e
psilon_0}
\l
eft(
\d
frac{1}{|z|} -
\d
frac{1}{
\s
qrt{R^2+z^2}}
\r
ight)}}
`$*
* Au final, le **champ électrique $`
\o
verrightarrow{E}
`$** créé en tout point de coordonnées z
**sur l'axe de révolution $`
Oz
`$** (l'origine $`
O
`$ étant le centre du disque)
par un *disque de rayon $`
R
`$* chargé électriquement par une *distribution surfacique de charge uniforme $`
\d
ens^{2D}
`$*
s'écrit :
<br>
Pour $`
z>0
`$
:
$`
\o
verrightarrow{E}(z) =
\d
frac{
\d
ens^{2D}
\,
z}{2
\e
psilon_0}
\l
eft(1 -
\d
frac{z}{
\s
qrt{
\r
ho^2+z^2}}
\r
ight)
\,\o
verrightarrow{e_z
}
`$
*Pour $`
z>0
`$*
:
**$`
\m
athbf{
\b
oldsymbol{
\o
verrightarrow{E}(z) =
\d
frac{
\d
ens^{2D}
\,
z}{2
\e
psilon_0}
\l
eft(1 -
\d
frac{z}{
\s
qrt{
\r
ho^2+z^2}}
\r
ight)
\,\o
verrightarrow{e_z}}
}
`$
<br>
Pour $`
z>0
`$ :
$`
\o
verrightarrow{E}(z) =
\d
frac{
\d
ens^{2D}
\,
z}{2
\e
psilon_0}
\l
eft(- 1 -
\d
frac{z}{
\s
qrt{
\r
ho^2+z^2}}
\r
ight)
\,\o
verrightarrow{e_z
}
`
$
*Pour $`
z>0
`$ :*
**$`
\m
athbf{
\b
oldsymbol{
\o
verrightarrow{E}(z) =
\d
frac{
\d
ens^{2D}
\,
z}{2
\e
psilon_0}
\l
eft(- 1 -
\d
frac{z}{
\s
qrt{
\r
ho^2+z^2}}
\r
ight)
\,\o
verrightarrow{e_z}}
}
`
$
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment