Commit d4ae6c5c authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 4d534f4b
Pipeline #15584 canceled with stage
......@@ -60,9 +60,9 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
$`\begin{align} \mathbf{\color{brown}{U(&x,t)}} = U_1(x,t) + U_2(x,t) \\
&\\
&=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]
**$`\mathbf{U(&x,t)}`$**$`\; = U_1(x,t) + U_2(x,t)
<br>
$`\begin{align} \quad &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]
&\\
&=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_1}{2} + \dfrac{\varphi_2-\varphi_2}{2}\Big) \\
&\quad\quad\quad\quad + \,cos\Big(\alpha + \dfrac{\varphi_2+\varphi_2}{2} + \dfrac{\varphi_1-\varphi_1}{2}\Big)\,\Big]\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment