Commit d5afa7c0 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent dca84131
Pipeline #13824 canceled with stage
......@@ -151,8 +151,8 @@ L'action est stationnaire par rapport à de petites variations ($`1^{er}`$ ordre
$`\mathcal{S}=\displaystyle\int_{t_1}^{t_2}\mathcal{L}\big(x_i\,,\,\dpt{x}_i\big) dt`$
$`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}\left( \dfrac{\partial\mathcal{L}}{\partial x_i} \delta x_i
+\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \delta \dpt{x}_i\right)\,dt`$
$`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}\bigg( \dfrac{\partial\mathcal{L}}{\partial x_i} \delta x_i
+\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \delta \dpt{x}_i\Big)\,dt`$
<details markdown=1>
<summary>intégration par partie du second terme de l'intégrande`$
......@@ -164,9 +164,9 @@ $`(uv)'=u'v+uv'`$
<br>
$`uv'=(uv)'-u'v`$
<br>
$`\displaystyle\int_{\alpha_1}^{\alpha_2} u(\alpha)\cdot\dfrac{dv}{d\alpha}\,d\alpha
=\int_{\alpha_1}^{\alpha_2}\dfrac{d uv}{d\alpha}\,d\alpha
-\int_{\alpha_1}^{\alpha_2}\dfrac{d u}{d\alpha}\cdot v(\alpha)\,d\alpha`$
$`\displaystyle\int_{\alpha_1}^{\alpha_2} u\cdot\dfrac{dv}{d\alpha}\,d\alpha`$
$`\;=\int_{\alpha_1}^{\alpha_2}\dfrac{d (uv)}{d\alpha}\,d\alpha
-\int_{\alpha_1}^{\alpha_2}\dfrac{d u}{d\alpha}\cdot v\,d\alpha`$
</details>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment