Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
d62d3b01
Commit
d62d3b01
authored
Mar 26, 2023
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
4b21171b
Pipeline
#15639
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
14 deletions
+6
-14
cheatsheet.fr.md
12.temporary_ins/69.waves/30.n3/20.overview/cheatsheet.fr.md
+6
-14
No files found.
12.temporary_ins/69.waves/30.n3/20.overview/cheatsheet.fr.md
View file @
d62d3b01
...
...
@@ -562,14 +562,12 @@ _Il reste à calculer son amplitude $`A`$ et sa phase à l'origine $`\theta`$_
*
Une
**onde harmonique réelle $`U_1`$**
s'écrit comme la
*partie réelle de l'onde harmonique complexe $`\underline{U_1}`$*
.
<br>
$
`\begin{align} U_1
(x,t) &
= A\cdot cos(kx - \omega t + \varphi_1)\\
$
`\begin{align} U_1
&(x,t)
= A\cdot cos(kx - \omega t + \varphi_1)\\
&\\
&= \mathscr{Re}\big[A\cdot \big(cos(kx - \omega t + \varphi_1) + i\;sin(kx - \omega t + \varphi_1)\big)\big]
\\
&\\
&= \mathscr{Re}\big[A\cdot e^{\,i\;(kx - \omega t + \varphi_1)} \big]\end{align}`
$
\\
&= \mathscr{Re}\big[A\cdot e^{\,i\;(kx - \omega t + \varphi_1)} \big]\\
&\\
&= \mathscr{Re}\big[\underline{U_1}(x,t)\big] \end{align}`
$
...
...
@@ -580,26 +578,20 @@ _Il reste à calculer son amplitude $`A`$ et sa phase à l'origine $`\theta`$_
<br>
s'écrivent en notation complexe :
<br>
**$`
\
b
oldsymbol{
\m
athbf{
\u
nderline{U_1}(x,t) = A_1
\c
dot e^{
\,
i
\;
(kx -
\o
mega t +
\v
arphi_1)
}}}
`$**
**$`
\
b
oldsymbol{
\m
athbf{
\u
nderline{U_2}(x,t) = A_2
\c
dot e^{
\,
i
\;
(kx -
\o
mega t +
\v
arphi_2)
}}}
`$**
**$`\
large{\boldsymbol{\mathbf{\underline{U_1}(x,t) = A_1\cdot e^{\,i\;(kx - \omega t + \varphi_1)}
}}}`$**
**$`\
large{\boldsymbol{\mathbf{\underline{U_2}(x,t) = A_2\cdot e^{\,i\;(kx - \omega t + \varphi_2)}
}}}`$**
<br>
soit encore :
<br>
$
`\begin{align}\underline{U_1}(x,t) &= \underline{A_1}\cdot e^{\,i\;(kx - \omega t)}\\
&\quad\quad\text{avec }\underline{A_1} = A_1\,e^{\,i\;\varphi_1}\end{align}`
$.
<br>
$`
\b
egin{align}
\
c
olor
\
u
nderline{U_2}(x,t) &=
\u
nderline{A_2}
\c
dot e^{
\,
i
\;
(kx -
\o
mega t)}
\\
$
`\begin{align}\underline{U_2}(x,t) &= \underline{A_2}\cdot e^{\,i\;(kx - \omega t)}\\
&\quad\quad\text{avec }\underline{A_2} = A_2\,e^{\,i\;\varphi_2}\end{align}`
$.
<br>
ou $
`\underline{A_2}`
$ et $
`\underline{A_2}`
$ sont les amplitudes complexes des deux ondes.
en construction ...
une figure et une conclusion.
Ensuite le lien entre ... notation réelle, puis avantage notation complexe.
*
<!--===inutile tout cela a priori
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment