Commit dbd74383 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent b59f6e98
Pipeline #13225 canceled with stage
......@@ -510,7 +510,6 @@ x* La **circulation de la force conservative** s'exerçant sur un corpuscule de
$`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_X\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
& =\int_A^B \alpha\,\big(-\,\overrightarrow{grad}\,\phi_X\big) \cdot\overrightarrow{dl} \\
& =-\,\int_A^B \alpha\,\underset{\underset{\big(\overrightarrow{grad}\,\phi_X\cdot\overrightarrow{dl}\big)}{=d\phi}}{par définition de $`\overrightarrow{grad}\,\phi`$} \\
& =-\,\int_A^B \alpha\;d\phi_X \\
& =-\,\int_A^B \mathcal{E}_X^{pot} \\
\\
......@@ -519,7 +518,11 @@ $`\begin{align}
& \color{blue}{\large{\mathbf{\;=-\;\overset{B}{\underset{A}{\Large{\Delta}}}(\mathcal{E}_X^{pot})}}}\\
\end{align}`$
<br>
$`=-\displaystyle\,\int_A^B \alpha\,\underset{\big(\overrightarrow{grad}\,\phi_X\cdot\overrightarrow{dl}\big)}{=d\phi}`$
<br>
$`=-\displaystyle\,\int_A^B \alpha\,\underset{\underset{\big(\overrightarrow{grad}\,\phi_X\cdot\overrightarrow{dl}\big)}{=d\phi}}{par définition de $`\overrightarrow{grad}\,\phi}`$
<br>
$`=-\displaystyle\,\int_A^B \alpha\,\underset{\underset{\big(\overrightarrow{grad}\,\phi_X\cdot\overrightarrow{dl}\big)}{=d\phi}}{par définition de $`\overrightarrow{grad}\,\phi}`$
#### Qu'est-ce que la circulation d'un champ vectoriel le long d'un chemin ?
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment