Commit dfde9256 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent c2e3fe89
Pipeline #14645 canceled with stage
...@@ -100,8 +100,8 @@ RÉSUMÉ<br> ...@@ -100,8 +100,8 @@ RÉSUMÉ<br>
$`\Large{\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} = r\,N(t)}\normalsize{\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt}`$ $`\Large{\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} = r\,N(t)}\normalsize{\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt}`$
$`\displaystyle\begin{align} $`\normalsize{\displaystyle\begin{align}
\quad &\Longrightarrow\;\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}=\int_{t_1}^{t_2} r\,dt\\ \;\; &\Longrightarrow\;\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}=\int_{t_1}^{t_2} r\,dt\\
\\ \\
&\Longrightarrow\;\big[\,ln\,|N|\,\big]_{N(t_1)}^{N(t_2)}= r \,\big[\,t\,\big]_{t_1}^{t_2}\\ &\Longrightarrow\;\big[\,ln\,|N|\,\big]_{N(t_1)}^{N(t_2)}= r \,\big[\,t\,\big]_{t_1}^{t_2}\\
\\ \\
...@@ -115,7 +115,7 @@ RÉSUMÉ<br> ...@@ -115,7 +115,7 @@ RÉSUMÉ<br>
\\ \\
&\Longrightarrow\; N(t_2)=N(t_1)\,exp\,\big[r\,(t_2 - t_1)\big]\\ &\Longrightarrow\; N(t_2)=N(t_1)\,exp\,\big[r\,(t_2 - t_1)\big]\\
\\ \\
&\Longrightarrow\; \Large{N(t_2)=N(t_1)\;e^{\,r\,(t_2-t_1)}} &\Longrightarrow\;} \Large{N(t_2)=N(t_1)\;e^{\,r\,(t_2-t_1)}}
\end{align}`$ \end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment