Commit e22c51e2 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent cc65a0bf
Pipeline #13704 canceled with stage
......@@ -65,6 +65,17 @@ PRINCIPALES COMBINAISONS
et expression avec l'opérateur nabla $`\nabla`$ :
$`\Delta\,\phi=\overrightarrow{\nabla}\cdot\overrightarrow{\nabla}\,\phi`$
* <details markdown=1>
<summary>Expressions en coordonnées cylindriques et sphériques</summary>
* coordonnées cylindriques $`(\rho\,,\,\varphi\,,\,z)`$ :
$`\Delta\,\phi=\dfrac{1}{\rho}\dfrac{\partial}{\partial \rho}\left(\rho\,\dfrac{\partial \phi}{\partial \rho}\right)
+\dfrac{1}{\rho^2}\dfrac{\partial^2 \phi}{\partial \varphi^2}+\dfrac{\partial^2 \phi}{\partial z^2}`$
* coordonnées sphérique $`(r\,,\,\theta\,,\,\varphi)`$ :
$`\Delta\,\phi=\dfrac{1}{r}\dfrac{\partial^2}{\partial r^2}(r\phi}
+ \dfrac{1}{r^2\,\sin\theta}\dfrac{\partial}{\partial \theta}\left(\sin\theta\dfrac{\partial \phi}{\partial \theta}\right)
+ \dfrac{1}{r^2\,\sin^2\theta}\dfrac{\partial^2 \phi}{\partial \varphi^2}`$
---
*Laplacien $`\Delta\,\overrightarrow{U}`$ d'un champ vectoriel $`\overrightarrow{U}`$*
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment