Commit e4b512cc authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 5046cdc8
Pipeline #16978 canceled with stage
......@@ -198,6 +198,10 @@ P_1\,(M, \overrightarrow{e_{\rho}}, \overrightarrow{e_z})\; \text{plan de symét
#### Quelle expression du rotationnel de $`\overrightarrow{B}`$ choisir ?
* L'étude se réalise dans le repère cylindrique $`(O, \overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, z)`$
* $`\Longrightarrow`$ nous choisissons l'*expression en coordonnées cylindriques* du rotationnel :
<br>
$`\begin{align}
&\overrightarrow{rot}\,\overrightarrow{B}\cdot\overrightarrow{e_{\rho}}=
\dfrac{1}{\rho}\,\dfrac{\partial B_z}{\partial\varphi}\;-\;\dfrac{\partial B_{\varphi}}{\partial z}\\
......@@ -205,15 +209,23 @@ $`\begin{align}
&\overrightarrow{rot}\,\overrightarrow{B}\cdot\overrightarrow{e_{\varphi}}=
\dfrac{\partial B_{\rho}}{\partial z}\;-\;\dfrac{\partial B_z}{\partial \rho}\\
\\
&\overrightarrow{rot}\,\overrightarrow{B}\cdot\overrightarrow{e_{\varphi}}=
\dfrac{1}{\rho}\,\left(\dfrac{\partial (\rho\,B_{\varphi})}{\partial \rho}\;-\;\dfrac{\partial B_{\rho}}{\partial \varphi}
&\overrightarrow{rot}\,\overrightarrow{B}\cdot\overrightarrow{e_z}=
\dfrac{1}{\rho}\,\left(\dfrac{\partial (\rho\,B_{\varphi})}{\partial \rho}\;-\;\dfrac{\partial B_{\rho}}{\partial \varphi}\right)
\end{align}`$
<br>
$`\begin{align}
&\overrightarrow{rot}\,\overrightarrow{B}
&=\left(\dfrac{1}{\rho}\,\dfrac{\partial B_z}{\partial\varphi}\;-\;\dfrac{\partial B_{\varphi}}{\partial z}\right)\,\overrightarrow{e_{\rho}}\\
\\
&\;+\left(\dfrac{\partial B_{\rho}}{\partial z}\;-\;\dfrac{\partial B_z}{\partial \rho}\right)\,overrightarrow{e_{\varphi}}\\
\\
&\;+\left(
\dfrac{1}{\rho}\,\left(\dfrac{\partial (\rho\,B_{\varphi})}{\partial \rho}\;-\;\dfrac{\partial B_{\rho}}{\partial \varphi}\right)
\,\overrightarrow{e_z}
\end{align}`$
<!--A ADAPTER AU CHAMP MAGNETIQUE-----------
* L'étude se réalise dans le repère cylindrique $`(O, \overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, z)`$
* $`\Longrightarrow`$ nous choisissons l'*expression en coordonnées cylindriques* de du rotationnel :
<br>
**$`\mathbf{div\overrightarrow{E}=
\dfrac{1}{\rho}\cdot\dfrac{\partial\left(\rho\,E_{\rho}\right)}{\partial\,\rho}
+\dfrac{1}{\rho}\cdot\dfrac{\partial\,E_{\varphi}}{\partial\,\varphi}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment