Commit eaeff828 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent b12972b3
Pipeline #15599 canceled with stage
......@@ -526,17 +526,20 @@ $`\begin{align} \quad &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\color{blue}{\
<br>
$`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big) \cdot cos\Big(}\color{blue}{\underbrace{\color{brown}{kx - \omega t + \dfrac{\varphi_1+\varphi_2}{2}}}_{\text{pulsation }\omega\text{ inchangée}}}\color{brown}{\Big)}}}`$
-----------------------------------------
* Je remarque que l'*onde résultante*
* est **harmonique**.
* a la **même fréquence** $`\nu\,=\,\dfrac{\omega}{2\pi}que les deux ondes initiales
* Son amplitude est :
$`\begin{align}A_{onde&/;résult.} = \left| 2\,A\cdot cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\right|\\
& = toto
$`\boldsymbol{\mathbf{\color{brown}{\begin{align}A_{onde/;résult.} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\,\right|}\\
&\\
&=
\end{align}`$
----------------------------
* **Calcul de l'onde résultante** *en notation complexe* :
<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment