Commit ec4c17d2 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 3a16994a
Pipeline #16402 canceled with stage
...@@ -68,23 +68,15 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$. ...@@ -68,23 +68,15 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$.
$`M`$ est diagonale : $`M`$ est diagonale :
$`M=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$ $`\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$
$`e^{\,M}= $`\begin{align} M = & e^{\,M} =
\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$ \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\
+ & +\dfrac{1}{2!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
\dfrac{1}{2!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2 +\cdots + \dfrac{1}{k!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
+ \end{align}`$
\cdots
+
\dfrac{1}{k!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k
+
\cdots
`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment