Commit ed3fbfcc authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent ec4c17d2
Pipeline #16403 canceled with stage
...@@ -68,14 +68,17 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$. ...@@ -68,14 +68,17 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$.
$`M`$ est diagonale : $`M`$ est diagonale :
$`\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$ $`M = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$
$`\begin{align} M = & e^{\,M} = $`\begin{align} e^{\,M} = & \sum_{n=0}^{+\infty}\dfrac{M^n}{n!} \\
\\
\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\ \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\ & \\
& +\dfrac{1}{2!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2 & \cdot +\dfrac{1}{2!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
+\cdots + \dfrac{1}{k!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots +\cdots \\
\\
& \cdot + \dfrac{1}{k!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
\end{align}`$ \end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment