Commit ee24e3c9 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 24bffbf0
Pipeline #18236 canceled with stage
...@@ -784,11 +784,8 @@ figure à faire ...@@ -784,11 +784,8 @@ figure à faire
\times \times
\int_{\rho=0}^{R} \rho\,(\rho^2+z_M^2)^{\,-3/2}\,d\rho`$ \int_{\rho=0}^{R} \rho\,(\rho^2+z_M^2)^{\,-3/2}\,d\rho`$
<br> <br>
$`\displaystyle \hspace{1cm} = $`\displaystyle\hspace{1cm}=\dfrac{\dens^{2D}\,z}{2\epsilon_0}`$
\dfrac{\dens^{2D}\,z}{2\epsilon_0} $`\int_{\rho = 0}^R - \Big(\underbrace{-\dfrac{1}{2}_{n+1}\Big)}\cdot\underbrace{2\rho}_{u^{\,'}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{u^n}\,d\rho`$
\int_{\rho = 0}^R
- \Big(\underbrace{-\dfrac{1}{2}_{n+1}\Big)}\cdot
\underbrace{2\rho}_{u^{\,'}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{u^n}\,d\rho`$
<br> <br>
$`\displaystyle \hspace{1cm} = - \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_0^R`$ $`\displaystyle \hspace{1cm} = - \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_0^R`$
<br> <br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment