Commit f73127ec authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent ece0790e
Pipeline #18239 canceled with stage
......@@ -785,7 +785,7 @@ figure à faire
\int_{\rho=0}^{R} \rho\,(\rho^2+z_M^2)^{\,-3/2}\,d\rho`$
<br>
$`\displaystyle\hspace{1cm}=\dfrac{\dens^{2D}\,z}{2\epsilon_0}
\int_{\rho = 0}^R - \Big(\underbrace{-\dfrac{1}{2}}_{n+1}\Big)\cdot\underbrace{2\rho}_{u^{\,'}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{u^n}\,d\rho`$
\int_{\rho = 0}^R - \Big(\underbrace{-\dfrac{1}{2}}_{n+1}\Big)\cdot\underbrace{2\rho}_{\color{blue}{u^{\,'}}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{u^n}\,d\rho`$
<br>
$`\displaystyle \hspace{1cm} = - \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_0^R`$
<br>
......@@ -794,6 +794,8 @@ figure à faire
<br>
$`\displaystyle \hspace{1cm} = +\dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_R^0`$
<br>
$`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{\sqrt{z^2}} - \dfrac{1}{\sqrt{\rho^2+z^2}}\right)`$
<br>
$`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{|z|} - \dfrac{1}{\sqrt{\rho^2+z^2}}\right)`$
<br>
Ainsi le champ électrique s'exprime plus simplement :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment