Commit f7b0bcda authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 9cfe0df3
Pipeline #16400 canceled with stage
...@@ -68,15 +68,12 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$. ...@@ -68,15 +68,12 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$.
$`M`$ est diagonale : $`M`$ est diagonale :
$`M=\begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_m \\ \end{pmatrix}`$
ou
$`M=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$ $`M=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$
$`e^{\,M}= $`e^{\,M}=
\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}+ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}+
\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \en{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \en{pmatrix}`$
+ +
\dfrac{1}{2!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2 \dfrac{1}{2!}\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
+ +
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment