#### Qu'implique la direction de $`\overrightarrow{E}`$ ?
<!--A ADAPTER AU CHAMP MAGNETIQUE-----------
* L'étude des symétries de la distribution de charge implique en tout point de l'espace : **$`\mathbf{\overrightarrow{E}=E_{\rho}\,\overrightarrow{e_{\rho}}}`$**
* $`\Longrightarrow`$ les autres composantes de champ *$`\mathbf{E_{\varphi} \text{ et } E_z}`$ sont nulles* en tout point de l'espace :
* Si $`\mathbf{E_{\varphi}=E_z=0}`$ en tout point de l'espace $`\mathscr{E}`$, alors leur valeur nulle ne varie pas d'un point à un autre point voisin par translation élémentaire $`dz`$ ou variation élémentaire d'angle $`d\varphi`$. Donc *les dérivées partiellles de $`\mathbf{E_{\varphi}\text{ et }E_z}`$ par rapport à $`\mathbf{z\text{ et }\varphi}`$ sont nulles*.
$`\mathbf{\forall M \in \mathscr{E}\, , E_{\varphi}=E_z=0}`$
**$`\Longrightarrow\left\{
\begin{array}{l}
\mathbf{\dfrac{\partial E_{\varphi}}{\partial\varphi}=0 \;\;\text{ et } \;\;\dfrac{\partial E_{\varphi}}{\partial z}=0} \\
\mathbf{\dfrac{\partial E_z}{\partial\varphi}=0 \;\;\text{ et } \;\;\dfrac{\partial E_z}{\partial z}=0}
\end{array}
\right.`$**
* $`\Longrightarrow`$ l'expression de *la divergence de $`\overrightarrow{E}`$ se simplifie* en tout point de l'espace :
#### Qu'impliquent les invariances de $`\overrightarrow{E}`$ ?
<!--A ADAPTER AU CHAMP MAGNETIQUE-----------
* L'étude des invariances de la distribution de charge implique en tout point de l'espace : **$`\mathbf{\overrightarrow{E}=\overrightarrow{E}(\rho)}=E_{\rho}(\rho)\,\overrightarrow{E_\rho}`$**
* Dans l'espression $`\dfrac{\partial\left(\rho\,E_{\rho}\right)}{\partial\,\rho}`$, le terme **$`\rho\,E_{\rho}(\rho)`$** est une **fonction de la seule coordonnée $`\rho`$**. l'opérateur de *dérivée partielle* $`\dfrac{\partial}{\partial\,\rho}`$ peut être *remplacée par* l'opérateur de *dérivée totale* $`\dfrac{d}{d\rho}`$.
* $`\Longrightarrow`$ la divergence de $`\overrightarrow{E}`$ se réécrit :
#### Comment remonter à l'expression de $`\overrightarrow{E}`$ ?
<!--A ADAPTER AU CHAMP MAGNETIQUE-----------
* $`div\overrightarrow{E}=\dfrac{1}{\rho}\cdot\dfrac{d\left(\rho\,E_{\rho}\right)}{d\rho}`$ permet l'*écriture de la différentiel $`d\left(\rho\,E_{\rho}\right)`$* de la fonction $`\rho\,E_{\rho}`$ sous la forme :
* L'*intégration de $`d\left(\rho\,E_{\rho}\right)`$ entre $`\rho=0`$ et $`\rho_M`$*, $`M=M(\rho_M\,,\varphi_M\,, z_M)`$ étant un point quelconque de l'espace donne :