Commit f94ab1de authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 8485a8bf
Pipeline #13992 canceled with stage
...@@ -503,46 +503,47 @@ définies à partir des coordonnées cartésiennes $`(O,\,x,\,z)`$. ...@@ -503,46 +503,47 @@ définies à partir des coordonnées cartésiennes $`(O,\,x,\,z)`$.
Base orthonormée associée $`\big(\overrightarrow{e_{\rho}},\,\overrightarrow{e_{\theta}})`$ Base orthonormée associée $`\big(\overrightarrow{e_{\rho}},\,\overrightarrow{e_{\theta}})`$
Rappel coordonnées polaires (outil-math coordonnées pourra être affiché en parallèle) : Rappel coordonnées polaires (outil-math coordonnées pourra être affiché en parallèle) :
(à mettre dans coordonnées polaires)
$`\overrightarrow{e_{\rho}}=\;\;\,\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}`$ $`\overrightarrow{e_{\rho}}=\;\;\,\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}`$
$`\overrightarrow{e_{\theta}}=-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}`$ $`\overrightarrow{e_{\theta}}=-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}`$
------------------------
$`\begin{align} $`\begin{align}
\dfrac{d\overrightarrow{e_{\rho}}}{dt}&=\dfrac{d}{dt}\bigg(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\bigg)\\ \mathbf{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}&=\dfrac{d}{dt}\bigg(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\bigg)\\
\\ \\
&=\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\;\vec{0}}\bigg]\\ &=\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\
&\quad\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\;\vec{0}}\bigg]\\ &\quad\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x} &=\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x}
+\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\ +\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\ &=\omega\;\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\
\\ \\
&=\omega\;\overrightarrow{e_{\theta}} &\mathbf{=\omega\;\overrightarrow{e_{\theta}}}
\end{align}`$ \end{align}`$
-------------- --------------
$`\begin{align} $`\begin{align}
\dfrac{d\overrightarrow{e_{\theta}}}{dt}&=\dfrac{d}{dt}\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\ \mathbf{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}&=\dfrac{d}{dt}\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\
\\ \\
&=\Big[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\Big]\\ &=\\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\\bigg]\\
&\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\bigg]\\ &\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x} &=\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x}
+\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\ +\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\ &=\omega\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\
\\ \\
&=-\;\omega\;\overrightarrow{e_{\rho}} &\mathbf{=-\;\omega\;\overrightarrow{e_{\rho}}}
\end{align}`$ \end{align}`$
--------------- ---------------
$`\begin{align} $`\begin{align}
\dfrac{d^2\overrightarrow{e_{\rho}}}{dt^2}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\omega\,\vec{e_{\theta}}}\bigg)\\ \mathbf{\dfrac{d^2\overrightarrow{e_{\rho}}}{dt^2}}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\,\omega\,\vec{e_{\theta}}}\bigg)\\
\\ \\
&=\dfrac{d}{dt}\left(\omega\,\overrightarrow{e_{\theta}}\right)\\ &=\dfrac{d}{dt}\left(\omega\,\overrightarrow{e_{\theta}}\right)\\
\\ \\
...@@ -550,13 +551,13 @@ $`\begin{align} ...@@ -550,13 +551,13 @@ $`\begin{align}
\\ \\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;+\;\omega\;\big(-\,\omega\;\overrightarrow{e_{\rho}}\big)\\ &=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;+\;\omega\;\big(-\,\omega\;\overrightarrow{e_{\rho}}\big)\\
\\ \\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;-\;\omega^2\;\overrightarrow{e_{\rho}} &\mathbf{=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;-\;\omega^2\;\overrightarrow{e_{\rho}}}
\end{align}`$ \end{align}`$
--------------- ---------------
$`\begin{align} $`\begin{align}
\dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2} \mathbf{\dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2}}
&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=-\omega\,\vec{e_{\rho}}}\bigg)\\ &=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=-\omega\,\vec{e_{\rho}}}\bigg)\\
\\ \\
&=\dfrac{d}{dt}\left(-\omega\,\overrightarrow{e_{\rho}}\right)\\ &=\dfrac{d}{dt}\left(-\omega\,\overrightarrow{e_{\rho}}\right)\\
...@@ -565,7 +566,7 @@ $`\begin{align} ...@@ -565,7 +566,7 @@ $`\begin{align}
\\ \\
&=-\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega\;\big(\omega\;\overrightarrow{e_{\theta}}\big)\\ &=-\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega\;\big(\omega\;\overrightarrow{e_{\theta}}\big)\\
\\ \\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega^2\;\overrightarrow{e_{\theta}} &\mathbf{=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega^2\;\overrightarrow{e_{\theta}}}
\end{align}`$ \end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment