Commit fa1c7186 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 685d3c1b
Pipeline #14767 canceled with stage
...@@ -116,7 +116,7 @@ _Rectangular waveguide with a TE mode._ ...@@ -116,7 +116,7 @@ _Rectangular waveguide with a TE mode._
<br> <br>
#### $`\mathbf{TE}`$ modes #### 3 $`\mathbf{TE}`$ modes
##### Mode numbering ##### Mode numbering
...@@ -219,7 +219,7 @@ _Fig. 4.4: The geometric interpretation of the dispersion._ ...@@ -219,7 +219,7 @@ _Fig. 4.4: The geometric interpretation of the dispersion._
Similarly we obtain for the group velocity: Similarly we obtain for the group velocity:
$`v_{\varphi}=\drac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2}{\omega^2}}`$ $`v_{\varphi}=\dfrac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2}{\omega^2}}`$
__Geometrical interpretation__ __Geometrical interpretation__
...@@ -229,49 +229,48 @@ _Fig. 4.5: The geometric interpretation of the dispersion._ ...@@ -229,49 +229,48 @@ _Fig. 4.5: The geometric interpretation of the dispersion._
We can understand the propagating behaviour of the $`TE`$ wave using a We can understand the propagating behaviour of the $`TE`$ wave using a
simple interpretation: simple interpretation:
- For *ω* = *ω~c~*, *k~z~* = *k* sin *θ* =0. This implies *θ* = 0. The * For $`\omega=\omega_c\,, k_z=k\,\sin\theta = 0`$.
wave is doing a normal incidence on the plates (no *z* This implies $`\theta=0`$. The
progression) and *v~g~* = 0. In regions close to *ω~c~* the wave is doing a normal incidence on the plates (no $`z`$
progression) and $`v_g=0`$. In regions close to $`\omega_c`$ the
waveguides is highly dispersive. waveguides is highly dispersive.
- For *ω* , *k~z~ ^[ω]{.underline}^* , *θ π/*2 and *v~g~ c*. The TE * For $`\omega\longrightarrow\infty\,,k_z\longrightarrow\frac{\omega}{c}•,\theta\longrightarrow\pi/2`$
waves tends to have very large incidence angles and the guide and $`v_g\longrightarrow c`$.
behaves essentially as vacuum, The $`TE`$ waves tends to have very large incidence angles and the guide
behaves essentially as vacuum, i.e. dispersionless.
i.e. dispersionless. * We can rewrite the dispersion relation for a $`TE_{0,n}`$ mode using
wavelengths. Eq [4.5] becomes:
<br>
$`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{1}{\lambda_y}\big)^2}`$
<br>
where $`\lambda_z=\lambda / \sin\theta`$ and $`\lambda_y=\lambda / \cos\theta`$, or again
<br>
$`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{n}{\2b}\big)^2}`$
<br>
from which it is easy to confirm (see definition of $`\omega_c`$) that the
cut-off wavelength for a $`TE_{0,n}`$ mode is $`\lambda_c=\frac{2b}{n}`$
- We can rewrite the dispersion relation for a TE~0*,n*~ mode using ![](variation-phase-group-velocity-wersus-omega-guided-mode_temp_L1200.jpg)
wave- lengths. Eq [4.5](#_bookmark83) becomes: _Fig. 4.6: The phase and group velocity variations vs angular frequency for a guided mode._
1 = 1 2 !!!!! *Exercice 4.1 : Refractive index*
!!!!! Calculate and plot the refractive index vs the angular frequency for a $`TE`$ wave.
1 2 (4.8)
*λ~z~* V *λ*
*λy* #### 4. Power flow
>
where *λ~z~* = *λ/* sin *θ* and *λ~y~* = *λ/* cos *θ*, or again The power density (power per unit surface, units $`[W:m^2]`$)
traversing the waveguide can be evaluated from the time-averaged
Poynting vector :
1 = 1 2
*n* 2 (4.9)
>
from which it is easy to confirm (see definition of *ω~c~*) that the
cut-off wavelength for a TE~0*,n*~ mode is *λ~c~* = [2*b*]{.underline}
.
![](media/image232.png)
![](media/image237.png){width="0.12802602799650042in"
height="9.562445319335083e-2in"}Figure 4.6: The phase and group
velocity variations vs angular frequency for a guided mode.
chap2 Power flow
The power density (power per unit surface, units \[*W/m*^2^\])
traversing the waveguide can be evaluated from the time-averaged
Poynting vector
> >
(**P**) = ( [$`\overrightarrow{E}`$ × $`\overrightarrow{B}`$]{.underline} )*.* (4.10) (**P**) = ( [$`\overrightarrow{E}`$ × $`\overrightarrow{B}`$]{.underline} )*.* (4.10)
> >
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment