Commit ff0e5995 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 31ffda7a
Pipeline #15066 canceled with stage
......@@ -429,31 +429,22 @@ L'une représente des proies et l'autre des prédateurs.
<br>
* L'état **$`\mathbf{(X_1=D_2/C_2\,,\,X_2=C_1/D_1)}`$** est l'*unique cas stationnaire* intéressant.
<br>
**$`\left.\begin{array}{l}
**$`\mathbf{\left.\begin{array}{l}
\forall t \in \mathbb{R},\\
X_1(t) = \dfrac{D_2}{C_2} =X_1\\
X_2(t) = \dfrac{C_1}{D_1} = X_2
\end{array}\right\}`$**
\end{array}\right\}}`$**
$`\Longrightarrow\left\{\begin{array}{l}
\forall t \in \mathbb{R}, \\
\left.\Dfrac{dX_1}{dt}\right\vert_t=+C_1\,X_1(t)-D_1\,X_1(t)X_2(t)\\
\left.\Dfrac{dX_1}{dt}\right\vert_t=-D_2\,X_2(t)+C_2\,X_1(t)X_2(t)
\left.\dfrac{dX_1}{dt}\right\vert_t=+C_1\,\dfrac{D_2}{C_2}-D_1\,\dfrac{D_2}{C_2}\dfrac{C_1}{D_1}\\
\left.\dfrac{dX_1}{dt}\right\vert_t=-D_2\,\dfrac{C_1}{D_1}+C_2\,\dfrac{D_2}{C_2}\dfrac{C_1}{D_1}
\end{array}\right.`$
$`\Longrightarrow\left\{\begin{array}{l}
\forall t \in \mathbb{R}, \\
\left.\Dfrac{dX_1}{dt}\right\vert_t=+C_1\,\dfrac{D_2}{C_2}-D_1\,\dfrac{D_2}{C_2}\dfrac{C_1}{D_1}\\
\left.\Dfrac{dX_1}{dt}\right\vert_t=-D_2\,\dfrac{C_1}{D_1}+C_2\,\dfrac{D_2}{C_2}\dfrac{C_1}{D_1}
\end{array}\right.`$
$`\Longrightarrow\left\{\begin{array}{l}
**$`\mathbf{\Longrightarrow\left\{\begin{array}{l}
\forall t \in \mathbb{R}, \\
\left.\Dfrac{dX_1}{dt}\right\vert_t=+C_1\,\dfrac{D_2}{C_2}-D_1\,\dfrac{D_2}{C_2}\dfrac{C_1}{D_1}\\
\left.\Dfrac{dX_1}{dt}\right\vert_t=-D_2\,\dfrac{C_1}{D_1}+C_2\,\dfrac{D_2}{C_2}\dfrac{C_1}{D_1}
\end{array}\right.`$
C_1(t)=\dfrac{D_2}{C_2}=C_1\\
C_2(t)=\dfrac{C_1}{D_1}=C_2
\end{array}\right\}`$
\left.\dfrac{dX_1}{dt}\right\vert_t=0\\
\left.\dfrac{dX_1}{dt}\right\vert_t=0
\end{array}\right.}`$**
*$`\mathbf{\Longrightarrow} (X_1,X_2)`$* est *stationnaire*.
<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment