Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
test-regular-2
Courses
Commits
69c4fcec
Commit
69c4fcec
authored
Jan 13, 2020
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
a418d100
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
3 additions
and
3 deletions
+3
-3
textbook.fr.md
...-physics/04.differential-operators/04.curl/textbook.fr.md
+3
-3
No files found.
01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md
View file @
69c4fcec
...
...
@@ -111,7 +111,7 @@ Les équations (1) et (2) restant valables en tout point de l'espace, je peux om
de préciser le point, et écrire plus simplement
$`
\o
verrightarrow{rot}
\;\o
verrightarrow{X}
\c
dot
\o
verrightarrow{n}
=
\l
im_{
S
\t
o 0}
\;
\d
frac{
\o
int_C
\o
verrightarrow{X}
\c
dot
\o
verrightarrow{dl}}
=
\l
im_{
C
\t
o 0}
\;
\d
frac{
\o
int_C
\o
verrightarrow{X}
\c
dot
\o
verrightarrow{dl}}
{
\i
int_{S
\l
eftrightarrow C} dS}
\h
space{1 cm}
`$ (3)
$`
d
\m
athcal{C} =
\o
verrightarrow{rot}
\;\o
verrightarrow{X}
\c
dot
\o
verrightarrow{dS}
...
...
@@ -129,8 +129,8 @@ coordonnées définissent une base orthonormée directe.
Le vecteur au point quelconque M d'un champ vectoriel $`
\o
verrightarrow{X}
`$ de
composantes cartésiennes $`
(X_M, Y_M, Z_M)
`$ s'écrit
$`
\o
verrightarrow{X_M} = X_M
\c
dot
\o
verrightarrow{e_x} + Y_M
\c
dot
\o
verrightarrow{e_y}
+
X_M
\c
dot
\o
verrightarrow{e_z}
`
$
$`
\o
verrightarrow{X_M} = X_M
\c
dot
\o
verrightarrow{e_x} + Y_M
\c
dot
\o
verrightarrow{e_y}
+
X_M
\c
dot
\o
verrightarrow{e_z}
`
$
Je vais tester la circulation du champ vectoriel dans les trois directions indiquées
par les vecteurs unitaires . Pour l'étude de la composante de selon z (composante
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment