Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
0035015d
Commit
0035015d
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
f2cb23a8
Pipeline
#14765
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
23 deletions
+23
-23
textbook.fr.md
...-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
+23
-23
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
View file @
0035015d
...
@@ -166,6 +166,7 @@ with $`k=\sqrt{k_x^2+k_y^2+k_z^2}`$.
...
@@ -166,6 +166,7 @@ with $`k=\sqrt{k_x^2+k_y^2+k_z^2}`$.
which defines the type of propagation.
which defines the type of propagation.
In summary, for $
`TE`
$ waves:
In summary, for $
`TE`
$ waves:
$
`\Longrightarrow`
$ Existence of a cut-off frequency. The dispersion relation is:
$
`\Longrightarrow`
$ Existence of a cut-off frequency. The dispersion relation is:
*
$
`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`
$ for a $
`TE_{0,n}`
$ mode.
*
$
`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`
$ for a $
`TE_{0,n}`
$ mode.
...
@@ -176,45 +177,44 @@ $`\Longrightarrow`$ Existence of a cut-off frequency. The dispersion relation is
...
@@ -176,45 +177,44 @@ $`\Longrightarrow`$ Existence of a cut-off frequency. The dispersion relation is
We have for:
We have for:
*
*a $`TE_{0,n}`$ mode*
:
*
a $
`TE_{0,n}`
$ mode
:
*
if $
`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`
$
*
if $
`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`
$
$
`\Longrightarrow`
$ propagation without absorption for mode $
`TE_{0,n}`
$.
$
`\Longrightarrow`
$ propagation without absorption for mode $
`TE_{0,n}`
$.
*
if $
`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`
$
*
if $
`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`
$
$
`\Longrightarrow`
$ evanescent wave for mode $
`TE_{0,n}`
$.
$
`\Longrightarrow`
$ evanescent wave for mode $
`TE_{0,n}`
$.
*
*
a $
`TE_{0,n
}`
$ mode :
*
a $
`TE_{m,0
}`
$ mode :
*
if $
`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`
$
*
if $
`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`
$
$
`\Longrightarrow`
$ propagation without absorption for mode $
`TE_{
0,n
}`
$.
$
`\Longrightarrow`
$ propagation without absorption for mode $
`TE_{
m,0
}`
$.
*
if $
`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`
$
*
if $
`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`
$
$
`\Longrightarrow`
$ evanescent wave for mode $
`TE_{
0,n
}`
$.
$
`\Longrightarrow`
$ evanescent wave for mode $
`TE_{
m,0
}`
$.
*
a $
`TE_{m,n}`
$ mode :
*
if $
`\omega\gt\omega_c=\sqrt{\dfrac{n\pi c}{b}^2+\dfrac{n\pi c}{b}^2}\;\Longrightarrow\;k_z\in\mathscr{R}e`
$
$
`\Longrightarrow`
$ propagation without absorption for mode $
`TE_{m,n}`
$.
*
if $
`\omega\lt\omega_c=\sqrt{\dfrac{n\pi c}{b}^2+\dfrac{n\pi c}{b}^2}\;\Longrightarrow\;k_z\in\mathscr{I}m`
$
$
`\Longrightarrow`
$ evanescent wave for mode $
`TE_{m,n}`
$.
where $
`\omega_c`
$ is the cut-off angular frequency. So we can propagate an
electromagnetic wave as a $
`TE`
$ wave in rectangular waveguides only for frequencies
larger than the cut-off one: the waveguide acts as a high-pass filter.
$
`\Longrightarrow`
$ Propagation in the waveguide is dispersive:
>
For TEM waves in free space we have: $
`k=\omega / c`
$ and $
`v_{\varphi}=c`
$,
which is independent of $
`\omega`
$: non-dispersive medium. For $
`TE`
$ waves in
rectangular waveguides, we have in the case of a $
`TE_{0,n}`
$ mode: (the
propagation is along the $
`z`
$-axis):
$
`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`
$
and
$
`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}}}`
$
where
*ω~c~*
is the cut-off angular frequency. So we can propagate and
ELM wave as a TE wave in rectangular waveguides only for frequencies
larger than the cut-off one: the waveguide acts as a high-pass filter.
>
Propagation in the waveguide is dispersive:
>
For TEM waves in free space we have:
*k*
=
*ω/c*
and
*v~ϕ~*
=
*c*
,
which is independent of
*ω*
: non-dispersive medium. For TE waves in
rectangular waveguides, we have in the case of a TE~0
*,n*
~ mode: (the
propagation is along the
*z*
axis):
and
[]
{#_bookmark83 .anchor}
*k~z~*
=
>
*ω*
>
*ω*
2
>
*c*
2 −
*c*
*π*
2
*n*
2 (4.5)
*π*
2
*n*
2 (4.5)
>
>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment