Commit 0035015d authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent f2cb23a8
Pipeline #14765 canceled with stage
...@@ -166,6 +166,7 @@ with $`k=\sqrt{k_x^2+k_y^2+k_z^2}`$. ...@@ -166,6 +166,7 @@ with $`k=\sqrt{k_x^2+k_y^2+k_z^2}`$.
which defines the type of propagation. which defines the type of propagation.
In summary, for $`TE`$ waves: In summary, for $`TE`$ waves:
$`\Longrightarrow`$ Existence of a cut-off frequency. The dispersion relation is: $`\Longrightarrow`$ Existence of a cut-off frequency. The dispersion relation is:
* $`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`$ for a $`TE_{0,n}`$ mode. * $`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`$ for a $`TE_{0,n}`$ mode.
...@@ -176,45 +177,44 @@ $`\Longrightarrow`$ Existence of a cut-off frequency. The dispersion relation is ...@@ -176,45 +177,44 @@ $`\Longrightarrow`$ Existence of a cut-off frequency. The dispersion relation is
We have for: We have for:
* *a $`TE_{0,n}`$ mode* : * a $`TE_{0,n}`$ mode :
* if $`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`$ * if $`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`$
$`\Longrightarrow`$ propagation without absorption for mode $`TE_{0,n}`$. $`\Longrightarrow`$ propagation without absorption for mode $`TE_{0,n}`$.
* if $`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`$ * if $`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`$
$`\Longrightarrow`$ evanescent wave for mode $`TE_{0,n}`$. $`\Longrightarrow`$ evanescent wave for mode $`TE_{0,n}`$.
* *a $`TE_{0,n}`$ mode : * a $`TE_{m,0}`$ mode :
* if $`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`$ * if $`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`$
$`\Longrightarrow`$ propagation without absorption for mode $`TE_{0,n}`$. $`\Longrightarrow`$ propagation without absorption for mode $`TE_{m,0}`$.
* if $`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`$ * if $`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`$
$`\Longrightarrow`$ evanescent wave for mode $`TE_{0,n}`$. $`\Longrightarrow`$ evanescent wave for mode $`TE_{m,0}`$.
* a $`TE_{m,n}`$ mode :
* if $`\omega\gt\omega_c=\sqrt{\dfrac{n\pi c}{b}^2+\dfrac{n\pi c}{b}^2}\;\Longrightarrow\;k_z\in\mathscr{R}e`$
$`\Longrightarrow`$ propagation without absorption for mode $`TE_{m,n}`$.
* if $`\omega\lt\omega_c=\sqrt{\dfrac{n\pi c}{b}^2+\dfrac{n\pi c}{b}^2}\;\Longrightarrow\;k_z\in\mathscr{I}m`$
$`\Longrightarrow`$ evanescent wave for mode $`TE_{m,n}`$.
where $`\omega_c`$ is the cut-off angular frequency. So we can propagate an
electromagnetic wave as a $`TE`$ wave in rectangular waveguides only for frequencies
larger than the cut-off one: the waveguide acts as a high-pass filter.
$`\Longrightarrow`$ Propagation in the waveguide is dispersive:
>
For TEM waves in free space we have: $`k=\omega / c`$ and $`v_{\varphi}=c`$,
which is independent of $`\omega`$: non-dispersive medium. For $`TE`$ waves in
rectangular waveguides, we have in the case of a $`TE_{0,n}`$ mode: (the
propagation is along the $`z`$-axis):
$`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`$
and
$`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}}}`$
where *ω~c~* is the cut-off angular frequency. So we can propagate and
ELM wave as a TE wave in rectangular waveguides only for frequencies
larger than the cut-off one: the waveguide acts as a high-pass filter.
>
Propagation in the waveguide is dispersive:
>
For TEM waves in free space we have: *k* = *ω/c* and *v~ϕ~* = *c*,
which is independent of *ω*: non-dispersive medium. For TE waves in
rectangular waveguides, we have in the case of a TE~0*,n*~ mode: (the
propagation is along the *z* axis):
and
[]{#_bookmark83 .anchor}*k~z~* =
>
*ω*
>
*ω*2
>
*c*2 −
*c*
*π*2*n*2 (4.5) *π*2*n*2 (4.5)
> >
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment