Commit 00bdad0d authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent ca380129
Pipeline #10437 failed with stage
......@@ -75,77 +75,102 @@ $`v_2=v\cdot\sin(a + \theta + \alpha)`$
$`v^2=v\cdot\dfrac{\sin(\theta + \alpha)}{\cos(a)}`$
$`u_1\,v^1\,+\, u_2\,v^2\,=u\cdot\cos(\alpha)\cdot v\cdot\dfrac{\cos(a + \theta + \alpha)}
{\cos(a)} + u\cdot\sin(a + \alpha) \cdot v\cdot\dfrac{\sin(\theta + \alpha)}{\cos(a)}`$
$`\begin{equation}\begin{split}
u_1v^1+u_2v^2\,&=u\cdot\cos(\alpha)\cdot v\cdot\dfrac{\cos(a + \theta + \alpha)}{\cos(a)} \\
&\quad + u\cdot\sin(a + \alpha) \cdot v\cdot\dfrac{\sin(\theta + \alpha)}{\cos(a)}
\end{split}\end{equation}`$
$`\quad= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(\alpha)\,\cos(a + \theta + \alpha)\,+\,\sin(a + \alpha)\,\sin(\theta + \alpha)\right]`$
$`\begin{equation}\begin{split}
u_1v^1+u_2v^2\,&= u\,v\,\dfrac{1}{\cos(a)} \times \\
& \quad \left[+\cos(\alpha)\,\cos(a + \theta + \alpha) \right. \\
& \left.\quad\;+\,\sin(a + \alpha)\,\sin(\theta + \alpha)\,\right]
\end{split}\end{equation}`$
On a
En utilisant les relations trigonométriques
$`\cos(a + \theta + \alpha)=\cos\left[a + (\theta + \alpha)\right]=\cos(a)\,\cos(\theta + \alpha)-\sin(a)\,\sin(\theta + \alpha)`$
$`\cos(\theta + \alpha)=\cos(\theta)\cos(\alpha)-\sin(\theta)\sin(\alpha)`$
$`\sin(a + \alpha)=\sin(a)\cos(\alpha)+\sin(\alpha)\cos(a)`$
$`\sin(\theta + \alpha)=\sin(\theta)\cos(\alpha)+\sin(\alpha)\cos(\theta)`$
donc
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)\cos(\theta + \alpha)\,-\,\sin(a)\sin(\alpha)\sin(\theta + \alpha)
\,+\,\sin(a)\,\cos^2(\alpha)\,\sin(\theta)
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
De plus
$`\cos(\theta + \alpha)=\cos(\theta)\,\cos(\alpha)\,-\,\sin(\theta)\,\sin(\alpha)`$
$`\sin(\theta + \alpha)=\sin(\theta)\,\cos(\alpha)\,+\,\sin(\alpha)\,\cos(\theta)`$
donc
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)\cos(\theta)\,\cos(\alpha)
\,-\,\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)
\,-\,\sin(a)\sin(\alpha)\sin(\alpha)\,\cos(\theta)
\,+\,\sin(a)\,\cos^2(\alpha)\,\sin(\theta)
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,
\left[\cos(a)\cos^2(\alpha)\cos(\theta)
\,-\,\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)
\,-\,\sin(a)\sin^2(\alpha)\,\cos(\theta)
\,+\,\sin(a)\,\cos^2(\alpha)\,\sin(\theta)
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
à vérifier et terminer
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos^2(\alpha)\cos(\theta)
\,-\,\cancel{\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)}
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)
\,-\,\sin(a)\sin^2(\alpha)\,\cos(\theta)
\,+\,\xcancel{\sin(a)\,\cos^2(\alpha)\,\sin(\theta)}
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cancel{\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)}
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
$`\begin{multline}
u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos^2(\alpha)\cos(\theta)\\
\,-\,\cancel{\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)}\\
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)\\
\,-\,\sin(a)\sin^2(\alpha)\,\cos(\theta)\\
\,+\,\xcancel{\sin(a)\,\cos^2(\alpha)\,\sin(\theta)}\\
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)\\
\,+\,\cancel{\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)}\\
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]\\
\end{multline}`$
qui impliquent
$`\begin{equation}\begin{split}
\cos(a\,&\,+ \theta + \alpha)=\cos\left[a + (\theta + \alpha)\right] \\
& \\
&=\cos(a)\,\cos(\theta + \alpha)-\sin(a)\,\sin(\theta + \alpha) \\
& \\
&=+\cos(a)\,[\cos(\theta)\cos(\alpha)-\sin(\theta)\sin(\alpha)] \\
& \quad-\sin(a)\,[\sin(\theta)\cos(\alpha)+\sin(\alpha)\cos(\theta)]\\
& \\
&=+\cos(a)\cos(\theta)\cos(\alpha) \\
&\quad-\cos(a)\sin(\theta)\sin(\alpha) \\
& \quad-\sin(a)\sin(\theta)\cos(\alpha)\\
& \quad-\sin(a)\sin(\alpha)\cos(\theta)]
\end{split}\end{equation}`$
et
$`\begin{equation}\begin{split}
\sin(a +& \alpha)\,\sin(\theta + \alpha) \\
&=[\sin(a)\cos(\alpha)+\sin(\alpha)\cos(a)] \\
& \quad\times[\sin(\theta)\cos(\alpha)+\sin(\alpha)\cos(\theta)] \\
& \\
&= + \sin(a)\cos(\alpha)\sin(\theta)\cos(\alpha) \\
& \quad + \sin(a)\cos(\alpha)\sin(\alpha)\cos(\theta) \\
& \quad + \sin(\alpha)\cos(a)\sin(\theta)\cos(\alpha) \\
& \quad +\sin(\alpha)\cos(a)\sin(\alpha)\cos(\theta)
\end{split}\end{equation}`$
nous obtenons
$`\begin{equation}
\begin{split}
u_1v^1+u_2v^2 &= u\,v\,\dfrac{1}{\cos(a)} \times \\
& \left[\,+\,\cos(\alpha)\cos(a)\cos(\theta)cos(\alpha)\right.\\
&\;-\,\cos(\alpha)\cos(a)\sin(\theta)\sin(\alpha)\\
&\;-\,\cos(\alpha)\sin(a)\sin(\theta)\cos(\alpha)\\
&\;-\,\cos(\alpha)\sin(a)\sin(\alpha)\cos(\theta)\\
&\;+\, \sin(a)\cos(\alpha)\sin(\theta)\cos(\alpha)\\
&\;+\,\sin(a)\cos(\alpha)\sin(\alpha)\cos(\theta)\\
&\;+\,\sin(\alpha)\cos(a)\sin(\theta)\cos(\alpha)\\
& \left.\;\;+\,\sin(\alpha)\cos(a)\sin(\alpha)\cos(\theta)\,\right]
\end{split}
\end{equation}`$
$`\begin{equation}
\begin{split}\require{cancel}
u_1v^1+u_2v^2 &= u\,v\,\dfrac{1}{\cos(a)} \times \\
& \left[\,+\,\cos(\alpha)\cos(a)\cos(\theta)cos(\alpha)\right.\\
&\;-\,\cos(\alpha)\cancel{\cos(a)\sin(\theta)}\sin(\alpha)\\
&\;-\,\cos(\alpha)\cancel{\sin(a)\sin(\theta)}\cos(\alpha)\\
&\;-\,\cos(\alpha)\cancel{\sin(a)\sin(\alpha)}\cos(\theta)\\
&\;+\,\sin(a)\cancel{\cos(\alpha)\sin(\theta)}\cos(\alpha)\\
&\;+\,\sin(a)\cancel{\cos(\alpha)\sin(\alpha)}\cos(\theta)\\
&\;+\,\sin(\alpha)\cancel{\cos(a)\sin(\theta)}\cos(\alpha)\\
& \left.\;\;+\,\sin(\alpha)\cos(a)\sin(\alpha)\cos(\theta)\,\right]
\end{split}
\end{equation}`$
$`\begin{equation}
\begin{split}\require{cancel}
u_1v^1+u_2v^2 &= u\,v\,\dfrac{1}{\cos(a)} \times \\
& \quad\left[\,+\,\cos^2(\alpha)\cos(a)\cos(\theta)\right.\\
& \quad\left.\;\;+\,\sin^2(\alpha)\cos(a)\cos(\theta)\,\right]
\end{split}\end{equation}`$
$`\begin{equation}
\begin{split}\require{cancel}
u_1v^1+u_2v^2 &= u\,v\,\dfrac{1}{\cos(a)} \times \\
& \left[\left(\cos^2(\alpha) + \sin^2(\alpha)\right)\,\cos(a)\cos(\theta)\right]
\end{split}\end{equation}`$
$`u_1v^1+u_2v^2 = u\,v\,\dfrac{\cos(a)\cos(\theta)}{\cos(a)}`$
$`u_1v^1+u_2v^2 = u\,v\,\cos(\theta)`$
Les choses se mettent en place pour tout ce niveau 4... je commence à voir une organisation..
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment