Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
07512b13
Commit
07512b13
authored
Nov 04, 2023
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
6dc72d42
Pipeline
#16999
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
8 deletions
+19
-8
cheatsheet.fr.md
...near-current/20.ampere-local/20.overview/cheatsheet.fr.md
+19
-8
No files found.
12.temporary_ins/20.magnetostatics-vacuum/40.ampere-theorem-applications/30.cylindrical-current-distributions/10.rectilinear-current/20.ampere-local/20.overview/cheatsheet.fr.md
View file @
07512b13
...
@@ -275,20 +275,31 @@ $`\overrightarrow{B}=B_{\varphi}\,\overrightarrow{e_{\varphi}}=0\,\overrightarro
...
@@ -275,20 +275,31 @@ $`\overrightarrow{B}=B_{\varphi}\,\overrightarrow{e_{\varphi}}=0\,\overrightarro
* Si $`
\m
athbf{B_{
\r
ho}=B_z=0}
`$ en tout point de l'espace $`
\m
athscr{E}
`$, alors
* Si $`
\m
athbf{B_{
\r
ho}=B_z=0}
`$ en tout point de l'espace $`
\m
athscr{E}
`$, alors
leur valeur nulle ne varie pas d'un point à un autre point voisin par translation
leur valeur nulle ne varie pas d'un point à un autre point voisin par translation
élémentaire $`
d
z
`$
ou variation élémentaire d'angle $`
d
\v
arphi
`$.
élémentaire $`
d
\r
ho
`$ ou $`
dz
`$,
ou variation élémentaire d'angle $`
d
\v
arphi
`$.
Donc *les dérivées partiellles de $`
\m
athbf{
E_{
\v
arphi}
\t
ext{ et }E
_z}
`$ par
Donc *les dérivées partiellles de $`
\m
athbf{
B_{
\r
ho}
\t
ext{ et }B
_z}
`$ par
rapport à $`
\m
athbf{
z
\t
ext{ et }
\v
arphi
}
`$ sont nulles* :
rapport à $`
\m
athbf{
\r
ho
\,
,
\,\v
arphi
\t
ext{ et }z
}
`$ sont nulles* :
<br>
<br>
$`
\m
athbf{
\f
orall M
\i
n
\m
athscr{B}
\,
,
E_{
\r
ho}=E
_z=0}
`$
$`
\m
athbf{
\f
orall M
\i
n
\m
athscr{B}
\,
,
B_{
\r
ho}=B
_z=0}
`$
**$`
\L
ongrightarrow
\l
eft
\{
**$`
\L
ongrightarrow
\l
eft
\{
\b
egin{array}{l}
\b
egin{array}{l}
\
m
athbf{
\d
frac{
\p
artial E_{
\v
arphi}}{
\p
artial
\v
arphi}=0
\;\;\t
ext{ et }
\;\;\d
frac{
\p
artial E_{
\v
arphi}}{
\p
artial z}=0
}
\\
\
b
oldsymbol{
\m
athbf{
\d
frac{
\p
artial B_{
\r
ho}}{
\p
artial
\r
ho}=
\d
frac{
\p
artial B_{
\r
ho}}{
\p
artial
\v
arphi}=
\d
frac{
\p
artial B_{
\r
ho}}{
\p
artial z}=0}
}
\\
\
m
athbf{
\d
frac{
\p
artial E_z}{
\p
artial
\v
arphi}=0
\;\;\t
ext{ et }
\;\;\d
frac{
\p
artial E_z}{
\p
artial z}=0}
\
b
oldsymbol{
\m
athbf{
\d
frac{
\p
artial B_z}{
\p
artial
\r
ho}=
\d
frac{
\p
artial B_z}{
\p
artial
\v
arphi}=
\d
frac{
\p
artial B_z}{
\p
artial z}=0}}
\\
\e
nd{array}
\e
nd{array}
\r
ight.
`$**
\r
ight.
`$**
* $`
\L
ongrightarrow
`$ l'expression de *la divergence de $`
\o
verrightarrow{E}
`$ se simplifie* en tout point de l'espace :
* $`
\L
ongrightarrow
`$ l'expression du *rotarionnel de $`
\o
verrightarrow{B}
`$ se simplifie* en tout point de l'espace :
**$`
\m
athbf{div
\o
verrightarrow{E}}
`$**
**$`
\m
athbf{
\o
verrightarrow{rot}
\,\o
verrightarrow{B}}
`$**
\begin{align}
&\boldsymbol{\mathbf{\;&=\left(\dfrac{1}{\rho}\,\dfrac{\partial B_z}{\partial\varphi}\;-\;\dfrac{\partial B_{\varphi}}{\partial z}\right)\,\overrightarrow{e_{\rho}}}}\\
\\
&\boldsymbol{\mathbf{&\quad\; +\left(\dfrac{\partial B_{\rho}}{\partial z}\;-\;\dfrac{\partial B_z}{\partial \rho}\right)\,\overrightarrow{e_{\varphi}}}}\\
\\
&\boldsymbol{\mathbf{&\quad\; +
\,\dfrac{1}{\rho}\,\left(\dfrac{\partial (\,\rho\,B_{\varphi})}{\partial \rho}\;-\;\dfrac{\partial B_{\rho}}{\partial \varphi}\right)
\,\overrightarrow{e_z}}}
\end{align}`
$
**
$
`\require{\cancel}=\dfrac{1}{\rho}\cdot\dfrac{\partial\left(\rho\,E_{\rho}\right)}{\partial\,\rho}
$
`\require{\cancel}=\dfrac{1}{\rho}\cdot\dfrac{\partial\left(\rho\,E_{\rho}\right)}{\partial\,\rho}
+\xcancel{\dfrac{1}{\rho}\cdot\dfrac{\partial\,E_{\varphi}}{\partial\,\varphi}}
+\xcancel{\dfrac{1}{\rho}\cdot\dfrac{\partial\,E_{\varphi}}{\partial\,\varphi}}
+\xcancel{\dfrac{\partial\,E_z}{\partial\,z}}`
$
+\xcancel{\dfrac{\partial\,E_z}{\partial\,z}}`
$
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment