Commit 07f07d68 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 25af0d4a
Pipeline #19528 canceled with stage
...@@ -19,12 +19,20 @@ visible: false ...@@ -19,12 +19,20 @@ visible: false
##### Expression de la divergence en coordonnées cylindriques ##### Expression de la divergence en coordonnées cylindriques
<br>**$`\boldsymbol{\mathbf{div\,\overrightarrow{X}\;\color{black}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$**
<br>**$`div\,\overrightarrow{X}\;\color{gray}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho} <br>**$`div\,\overrightarrow{X}\;\color{gray}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}`$** +\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}`$**
##### Expression de la divergence en coordonnées sphériques ##### Expression de la divergence en coordonnées sphériques
<br>**$`\mathbf{\boldsymbol{div\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,=
\; &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r)}}}`$
<br>**$`\mathbf{\boldsymbol{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}}}`$**
<br>**$`\mathbf{\boldsymbol{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}\end{align}}}`$**
<br>**$`\mathbf{\boldsymbol{\begin{align} <br>**$`\mathbf{\boldsymbol{\begin{align}
div\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,=\; &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r)}\\ div\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,=\; &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r)}\\
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\ & \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment