Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
09273f38
Commit
09273f38
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
4cd8d121
Pipeline
#14773
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
9 additions
and
35 deletions
+9
-35
textbook.fr.md
...-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
+9
-35
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
View file @
09273f38
...
@@ -276,52 +276,26 @@ Let's consider a $`TE_{0,n}`$ mode as described by equations
...
@@ -276,52 +276,26 @@ Let's consider a $`TE_{0,n}`$ mode as described by equations
$
`k\,\cos\theta=k_y=n\pi/b`
$ and $
`k\,\sin\theta=k_z`
$. We get
$
`k\,\cos\theta=k_y=n\pi/b`
$ and $
`k\,\sin\theta=k_z`
$. We get
$
`\overrightarrow{E}_{\perp}=`
$$
`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t})\overrightarrow{e_x}`
$
$
`\overrightarrow{E}_{\perp}=`
$$
`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t})\overrightarrow{e_x}`
$
$
`\quad(eq. 4.11)`
$
and
and
$
`\overrightarrow{B}_{\perp}=`
$
$
`\left(\begin{array}{l}
0\\
\dfrac{E_0}{c}\dfrac{k_z}{k}\sin\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)\\
\dfrac{E_0}{c}\dfrac{n\pi}{b\,k}\cos\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)
\end{array}\right)`
$$
`\quad(eq. 4.12)`
$
\c
dot
\s
in
\b
ig(
\u
nderbrace{k
\,\s
in
\t
heta}_{
\l
arge{wavevector}} z-
\o
mega t
\b
ig)
\o
verrightarrow{e_z}
`$$`
\q
uad(eq.1)
`$
The time-averaged Poynting vector becomes:
and
⊥ *b z* *x*
>
0
>
$`
\o
verrightarrow{B}
`$~⊥~ = *E*0 *kz* sin ( *nπ y*) sin (*k~z~z* − *ωt*)
>
(4.12)
*E*0 *nπ* cos ( *nπ y*) sin (*k~z~z* − *ωt*)
1 *E*^2^ *k~z~*
2 *[nπ]{.underline}*
(**P**) = 2 *cµ*0
sin
>
*k*
>
*y \_e~z~* (4.13)
>
*b*
>
The power transmitted by the guide (units
\[
*W*
\]
) can be found by
The power transmitted by the guide (units
\[
*W*
\]
) can be found by
integrating the previous results over the cross-section of the
integrating the previous results over the cross-section of the
waveguide
waveguide
= { *a* { *b*
= 1 *E*^2^ *k~z~*
>
(4.14)
>
i.e. the transmitted power is proportional to the cross-sectional area
i.e. the transmitted power is proportional to the cross-sectional area
of the waveguide. The practical limit of transmittable power is set by
of the waveguide. The practical limit of transmittable power is set by
the dielectric breakdown of the dielectric filling the waveguide. In
the dielectric breakdown of the dielectric filling the waveguide. In
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment