Commit 4cd8d121 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 05cab151
Pipeline #14772 canceled with stage
......@@ -264,26 +264,27 @@ _Fig. 4.6 : The phase and group velocity variations vs angular frequency for a g
#### 4.4 - Power flow
The power density (power per unit surface, units $`[W:m^2]`$)
The power density (power per unit surface, units $`[W/m^2]`$
traversing the waveguide can be evaluated from the time-averaged
Poynting vector :
$`\langle\overrightarrow{P}=\Big\langle\dfrac{\overrightarrow{E}\times\overrightarrow{B}}{\mu}\Big\rangle`$
$`\langle\overrightarrow{P}\rangle=\Big\langle\dfrac{\overrightarrow{E}\times\overrightarrow{B}}{\mu}\Big\rangle`$
Let's consider a $`TE_{0,n}`$ mode as described by equations
[4.1] and [4.2.]. We can omit the pre-factor
"-2" from the amplitudes and use the fact that
$`k\,\cos\theta=k_y=n\pi/b`$ and $`k\,\sin\theta=k_z`$. We get
$`\overrightarrow{E}_{\perp}=`$$`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t})\overrightarrow{e_x}`$
and
\cdot \sin\big(\underbrace{k\,\sin\theta}_{\large{wavevector}} z-\omega t\big)\overrightarrow{e_z}`$$`\quad(eq.1)`$
>
(**P**) = ( [$`\overrightarrow{E}`$ × $`\overrightarrow{B}`$]{.underline} )*.* (4.10)
>
Let's consider a TE~0*,n*~ mode as described by equations
[4.1and](#_bookmark79) [4.2.](#_bookmark80) We can omit the pre-factor
"-2" from the amplitudes and use the fact that *k* cos *θ* = *k~y~* =
*nπ/b* and *k* sin *θ* = *k~z~*. We get
>
$`\overrightarrow{E}`$ = *E*~0~ sin *[nπ]{.underline}y* sin(*k z**ωt*)*\_e*
>
(4.11)
and
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment