Commit 0a6e716c authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent bf974d01
Pipeline #17595 canceled with stage
......@@ -114,13 +114,38 @@ RÉSUMÉ
* $`div\,\overrightarrow{B} = 0\quad`$ (Maxwell-Thomson)
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &\forall \overrightarrow{V}\,,\,
div (\overrightarrow{rot}\,\overrightarrow{V}=0)\\
$`\color{blue}{\scriptsize{\left.\begin{align} \quad &\forall \overrightarrow{V}\,,\,
div \,(\overrightarrow{rot}\,\overrightarrow{V})=0\\
&div\,\overrightarrow{U}=0\end{align}\right\}\Longrightarrow\\
\exists\overrightarrow{V}\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}}}`$
<br>
$`\exists\overrightarrow{A}\,,\, \overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}`$
* $`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}\quad`$(Maxwell-Faraday)
<br>
$`\quad\quad=-\dfrac{\partial \big(\overrightarrow{rot}\,\overrightarrow{A}\big)}{\partial t}`$
<br>
$`\color{blue}{\scriptsize{\quad
\text{(physique Newton : espace et temps indépendants) }\Longrightarrow
\text{(ordre de dérivation entre variables d'espace et de temps n'importe pas)
}}}`$
$`\Longrightarrow \overrightarrow{rot}\,\left(\overrightarrow{E}+\dfrac{\partial \overrightarrow{A}
}{\partial t}\right)=\overrightarrow{0}`$
$`\quad = A\cdot
\;\underbrace{cos \Big[\,\Big(\omega t - \vec{k}\cdot\vec{r} + \varphi'\Big) - \dfrac{\pi}{2}}_{\color{blue}{cos(a-\pi/2)\\\;=cos(a)\,cos(\pi/2)+sin(a)\,sin(\pi/2)\\=\;sin(a)}}\Big]`$
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<!-------------
$`\color{blue}{\scriptsize{\quad\quad
......@@ -142,27 +167,6 @@ $`\overrightarrow{rot}\,\overrightarrow{U}=\overrightarrow{0}\quad\Longleftright
$`div\,\overrightarrow{U}=0\quad\Longleftrightarrow\quad\exists\phi\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}`$
-------------->
$`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}\quad`$(Maxwell-Faraday)
$`\quad\quad=-\dfrac{\partial \big(\overrightarrow{rot}\,\overrightarrow{A}\big)}{\partial t}`$
$`\Longrightarrow \overrightarrow{rot}\,\left(\overrightarrow{E}+\dfrac{\partial \overrightarrow{A}
}{\partial t}\right)=\overrightarrow{0}`$
$`\quad = A\cdot
\;\underbrace{cos \Big[\,\Big(\omega t - \vec{k}\cdot\vec{r} + \varphi'\Big) - \dfrac{\pi}{2}}_{\color{blue}{cos(a-\pi/2)\\\;=cos(a)\,cos(\pi/2)+sin(a)\,sin(\pi/2)\\=\;sin(a)}}\Big]`$
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<br>
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment