Commit 0b3d6ed0 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent fb3cbbf3
Pipeline #13547 canceled with stage
......@@ -80,7 +80,7 @@ $`\quad =
$`\color{blue}{div\,\overrightarrow{U}=\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}}`$
* La divergence d'un champ vectoriel est un champ scalaire.
* La divergence d'un champ vectoriel est un champ scalaire.
Le gradient d'un champ scalaire $`f`$ est le champ vectoriel, qui s'exprime en coordonnées cartésiennes :
$`\overrightarrow{grad}\,f=\left(
......@@ -139,17 +139,42 @@ $`\quad -
$`\quad = \left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\quad - \dfrac{\partial^2 E_y}{\partial y\,\partial x}
\quad\quad - \dfrac{\partial^2 E_y}{\partial y\,\partial x}
+\dfrac{\partial^2 E_x}{\partial y^2}
+\dfrac{\partial^2 E_x}{\partial z^2}
-\dfrac{\partial^2 E_z}{\partial z\,\partial x} \\
\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\quad - \dfrac{\partial^2 E_z}{\partial z\,\partial y}
\quad\quad - \dfrac{\partial^2 E_z}{\partial z\,\partial y}
+\dfrac{\partial^2 E_y}{\partial z^2}
+\dfrac{\partial^2 E_y}{\partial x^2}
-\dfrac{\partial^2 E_x}{\partial x\,\partial y} \\
\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\quad - \dfrac{\partial^2 E_y}{\partial x\,\partial z}
\quad\quad - \dfrac{\partial^2 E_y}{\partial x\,\partial z}
+\dfrac{\partial^2 E_x}{\partial x^2}
+\dfrac{\partial^2 E_z}{\partial y^2}
-\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
\end{array}\right)`$
* Nous remarquons alors que toutes les dérivées partielles du second ordre correspondant à
des termes croisés de coordonnées s'annulent :
$`\quad = \left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\cancel{\dfrac{\partial^2 U_y}{\partial x\, \partial y}}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\quad\quad - \dfrac{\partial^2 E_y}{\partial y\,\partial x}
+\dfrac{\partial^2 E_x}{\partial y^2}
+\dfrac{\partial^2 E_x}{\partial z^2}
-\dfrac{\partial^2 E_z}{\partial z\,\partial x} \\
\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\quad\quad - \dfrac{\partial^2 E_z}{\partial z\,\partial y}
+\dfrac{\partial^2 E_y}{\partial z^2}
+\dfrac{\partial^2 E_y}{\partial x^2}
-\dfrac{\partial^2 E_x}{\partial x\,\partial y} \\
\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\quad\quad - \dfrac{\partial^2 E_y}{\partial x\,\partial z}
+\dfrac{\partial^2 E_x}{\partial x^2}
+\dfrac{\partial^2 E_z}{\partial y^2}
-\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment