Commit 0b590be5 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 5a633949
Pipeline #19487 canceled with stage
...@@ -14,21 +14,20 @@ visible: false ...@@ -14,21 +14,20 @@ visible: false
##### Expression de la divergence en coordonnées cartésiennes ##### Expression de la divergence en coordonnées cartésiennes
**$`\mathbf{ <br>**$`\mathbf{
div\,\overrightarrow{X}}`$**$`\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}`$**$`\;\mathbf{=\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z} div\,\overrightarrow{X}}`$**$`\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}`$**$`\;\mathbf{=\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
}`$** }`$**
##### Expression de la divergence en coordonnées cylindriques ##### Expression de la divergence en coordonnées cylindriques
**$`\mathbf{div\,\overrightarrow{X}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho} <br>**$`\mathbf{div\,\overrightarrow{X}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$** +\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$**
##### Expression de la divergence en coordonnées sphériques ##### Expression de la divergence en coordonnées sphériques
**$`\mathbf{ **$`\boldsymbol{\mathbf{\begin{align}
div\,\overrightarrow{X}}`$**$`\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}`$**$`\;\boldsymbol{\mathbf{\begin{align} div\,\overrightarrow{X}}\color{black}{\;=\dfrac{d\Phi_X}{d\tau}}\, = &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\
= &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\ & \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
& \quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi} & \quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}
\end{align}}}`$** \end{align}}}`$**
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment