Commit 0c59dba6 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 46f4e058
Pipeline #21304 canceled with stage
...@@ -244,16 +244,16 @@ sur les condtions de mesure des durées et des longueurs? ...@@ -244,16 +244,16 @@ sur les condtions de mesure des durées et des longueurs?
<p style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">un <span style="color:#0066cc"> invariant spatial<br> <p style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">un <span style="color:#0066cc"> invariant spatial<br>
<span style="font-family:'Times New Roman';margin-left:30px;font-weight:bold;font-size:0.85rem;text-align:right;color:#6699ff">entre deux points A et B de l'espace </span><br> <span style="font-family:'Times New Roman';margin-left:30px;font-weight:bold;font-size:0.85rem;text-align:right;color:#6699ff">entre deux points A et B de l'espace </span><br>
<span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;color:#bbbbbb">appelé <span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;color:#bbbbbb">appelé
</span><span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;left;color:#bb3300"> longueur l<sub>AB</sub> </span><span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;left;color:#bb3300"> longueur l<sub>AB</sub><br>
</span><span style="font-family:'Times New Roman';font-weight:bold;font-size:0.85rem;color:#6699ff"> entre ces deux points.</span> </span><span style="font-family:'Times New Roman';font-weight:bold;font-size:0.85rem;color:#6699ff"> entre ces deux points.</span><br>
<span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">d'expression en coordonnées cartésienne</span></p> <span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">d'expression, en coordonnées cartésienne</span></p>
$`\color{green}{l_{AB}=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}}`$ $`\color{green}{l_{AB}=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}}`$
<hr width=100% size=6px border-style="solid" color=#00bb33> <hr width=100% size=6px border-style="solid" color=#00bb33>
<p style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">un <span style="color:#0066cc"> invariant temporel<br> <p style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">un <span style="color:#0066cc"> invariant temporel<br>
<span style="font-family:'Times New Roman';margin-left:30px;font-weight:bold;font-size:0.85rem;text-align:right;color:#6699ff">entre deux instants t<sub>1</sub> et t<sub>2</sub> du temps</span><br> <span style="font-family:'Times New Roman';margin-left:30px;font-weight:bold;font-size:0.85rem;text-align:right;color:#6699ff">entre deux instants t<sub>1</sub> et t<sub>2</sub> du temps</span><br>
<span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;color:#bbbbbb">appelé <span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;color:#bbbbbb">appelé
</span><span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;left;color:#bb3300"> durée Δt<sub>1 2</sub></sub></span> </span><span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;left;color:#bb3300"> durée Δt<sub>1 2</sub></sub></span><br>
<span style="font-family:'Times New Roman';font-weight:bold;font-size:0.85rem;color:#6699ff"> entre ces deux instants.</span> <span style="font-family:'Times New Roman';font-weight:bold;font-size:0.85rem;color:#6699ff"> entre ces deux instants.</span><br>
<span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">d'expression</span></p> <span style="font-family:'Times New Roman';font-weight:bold;font-size:1.15rem;text-align:left;color:#bbbbbb">d'expression</span></p>
$`\color{green}{\Delta t_{1\,2}=|t_2-t_1|=\sqrt{(t_2-t_1)^2}}`$</p> $`\color{green}{\Delta t_{1\,2}=|t_2-t_1|=\sqrt{(t_2-t_1)^2}}`$</p>
<hr width=100% size=6px border-style="solid" color=#00bb33> <hr width=100% size=6px border-style="solid" color=#00bb33>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment