Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
0d05103f
Commit
0d05103f
authored
Mar 11, 2021
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Delete cheatsheet.fr.md
parent
d8359207
Pipeline
#6406
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
59 deletions
+0
-59
cheatsheet.fr.md
...2.electromagnetism-waves-vacuum-overview/cheatsheet.fr.md
+0
-59
No files found.
01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetism-waves-vacuum-overview/cheatsheet.fr.md
deleted
100644 → 0
View file @
d8359207
---
title
:
electromagnetism-
published
:
false
visible
:
false
---
### Equations de Maxwell
Les équations de Maxwell locales précises les propriétés du champ électromagnétique
en tout point de l'espace.
$
`div \overrightarrow{E} = \dfrac{\rho}{\epsilon_0}`
$
$
`\overrightarrow{rot} \;\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`
$
$
`div \overrightarrow{B} = 0`
$
$
`\overrightarrow{rot} \;\overrightarrow{B} = \mu_0\;\overrightarrow{j} +
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{j}}{\partial t}`
$
$
`\rho`
$ est la densité volumique de charge totale.
$
`\overrightarrow{j}`
$ est la densité volumique de courant totale.
! Note :
! $
`\rho`
$ est la densité volumique de charge totale
de solution
### Rappel de l'équation d'onde d'un champ vectoriel
$
`\Delta \overrightarrow{X} - \dfrac{1}{v_{\phi}} \; \dfrac{\partial^2 \;\overrightarrow{X}}{\partial\; t^2}=0`
$
de solution générale ...
### Equation d'onde pour le champ électromagnétique
(Ou "Etude du Laplacien du champ électromagnétique")
$
`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)
=-\mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} +
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`
$
<br><br>
*
$
`\overrightarrow{grad} \left( div \; \overrightarrow{E} \right) = \overrightarrow{grad}\left( \dfrac{\rho}{\epsilon_O} \right)`
$
La reconstruction de
$
`\Delta \;\overrightarrow{E} =\overrightarrow{grad} \left(div\;\overrightarrow{E}\right) - \overrightarrow{rot}\, \left(\overrightarrow{rot}\;\overrightarrow{E}\right)`
$
donne :
$
`\Delta \;\overrightarrow{E} = \overrightarrow{grad}\left( \dfrac{\rho}{\epsilon_O} \right) + \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} +
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`
$
ce qui donne par identification au premier terme de l'équation d'onde :
$
`\Delta \;\overrightarrow{E}-\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} = \dfrac{1}{\epsilon_O} \;
\overrightarrow{grad}\left(\rho \right)+ \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} `
$
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment