Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
1144dfe5
Commit
1144dfe5
authored
Jul 28, 2020
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add new file
parent
5bcd55b7
Pipeline
#2351
failed with stage
in 23 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
43 additions
and
0 deletions
+43
-0
textbook.fr.md
...r-algebra/10.sets-relation-boolean-algebra/textbook.fr.md
+43
-0
No files found.
01.curriculum/02.mathematic/03.niv3/10.linear-algebra/10.sets-relation-boolean-algebra/textbook.fr.md
0 → 100644
View file @
1144dfe5
---
title
:
Ensembles, relations, algèbre de Boole
published
:
false
visible
:
false
---
!!!!
! Nous avons besoin de faire en parallèle les mathématiques...
<br>
! Il faut faire un parallèle entre les "outils mathéatiques" utiles aux physiciens
et leur présentation plus aboutie et rigoureuse en mathématique.
------------
## Ensembles et sous-ensembles
Sets and subsets
Conjuntos y subconjuntos
## Applications, fonctions
Binary relations, functions
Relaciones y funciones
Binary relation from a set A to a set B : is a set of ordered pairs, (m, n),
or m and n, where m is from the set M, n is from the set N, and m is related to n by some rule.
Function f : binary relation in which each element of a set A (the domain of f) is related to exactly
one element (its image) of an other set B. A function is a relation between two elements of
two given sets condition that for each element in the domain there's one and only one image
Relacion binario : correspondencia de elementos entre dos conjuntos.
función : relación en donde a cada elemento de un conjuto (A) le corresponde
uno y sólo un elemento de otro conjunto (B), a cada elemento del conjunto A (el dominio) se la asigna
un único elemento (su imagen) del conjunto B (el codominio/contradominio).
Bijection
## Relations d'équivalence
## Relations d'ordre
## Treillis
## Algèbre de Boole
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment