***$`\overrightarrow{E}`$** est un *vecteur polaire*.
**$`\mathbf{\mathcal{P}_1=}`$***$`\mathbf{\mathcal{P}_1\,(M, \overrightarrow{e_{\rho}}, \overrightarrow{e_z})}`$** est *plan de symétrie* pour $`\dens`$.
**$`\mathbf{\mathcal{P}_2=}`$***$`\mathbf{\mathcal{P}_2\,(M, \overrightarrow{e_{\varphi}}, \overrightarrow{e_{\rho}})}`$** est *plan de symétrie* pour $`\dens`$.
_figure temporaire à réviser : corriger_ $`\vec{e_r}`$ _en_ $`\vec{e_{\rho}}`$.
**Choix de $`\mathbf{\mathcal{S}_G}`$* : **cylindre**,
* d'**axe $`Oz`$**.
* de **rayon $`\rho_M`$**, coordonnées du point $`M`$ considéré.
* de **hauteur $`h`$**.
#### Que vaut le flux de $`\overrightarrow{E}`$ à travers $`\mathbf{\mathcal{S}_G}`$ ?
* $`\mathbf{\mathcal{S}_G}`$ surface fermée se décompose en **$`\mathbf{\mathcal{S}_G=\mathcal{S}_{dis1}+\mathcal{S}_{lat}+\mathcal{S}_{dis2}}`$** avec :
***$`\mathbf{\mathcal{S}_{dis1}}`$** : *disque supérieur* d'élément vectoriel de surface **$`\mathbf{\overrightarrow{dS}=+\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
***$`\mathbf{\mathcal{S}_{lat}}`$** : *surface latérale* tel que **$`\mathbf{\overrightarrow{dS}=+\rho_M\,d\varphi\,dz\,\overrightarrow{e_{\rho}}}`$**, tous les $` \overrightarrow{dS}`$ étant ici situés à la même distance $`\rho=\rho_M`$ de l'axe de révolution du cylindre.
***$`\mathbf{\mathcal{S}_{dis2}}`$** : *disque inférieur* tel que **$`\mathbf{\overrightarrow{dS}=-\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
* $`\Phi_E^{\mathcal{S}_G}= 2\pi \rho_M\,h\, E`$ , avec $`\Phi_E`$ le flux de $`\overrightarrow{E}`$ à travers $`{\mathcal{S}_G}`$
sont *commun à toutes les distributions* de charge à symétrie cylindrique invariantes par translation selon $`Oz`$.
* Le **calcul de $`Q_{int}`$** puis **de $`\overrightarrow{E}`$** nécessitent de *connaître l'expression mathématique pour $`\dens`$* en chaque point de l'espace.
<br>
$`\Longrightarrow`$ *différentes distributions de charge sont étudiées* dans la suite.
##### Calcul de la charge $`Q_{int}`$
* $`Q_{int}`$ est la **charge contenue à l'intérieur de $`\mathbf{\mathcal{S}_G}`$**.
***$`\displaystyle\mathbf{Q_{int}=\iiint_{\Ltau_G \rightarrow\mathcal{S}_G} \dens\; d\tau}`$**, avec :
***$`\mathbf{\tau_G}`$***volume intérieur* à $`\mathbf{\mathcal{S}_G}`$.
***$`\mathbf{d\tau}`$** est l'*élément de volume*.
##### Calcul de $`\overrightarrow{E}`$
* Il *résulte de la synthèse des résultats* précédents.
* L'**égalité entre les deux termes** du théorème de Gauss *donne la composante $`E`$* du champ $`\overrightarrow{E}=E\;\overrightarrow{e_{\rho}}`$ en tout point de l'espace :
**$`\mathbf{=\dfrac{1}{\epsilon_0}}`$***$`\,Q_{int}`$***$`\quad\Longrightarrow\mathbf{\text{ expression de }E}`$**.
<br>
Ne pas oublier le terme $`\dfrac{1}{\epsilon_0}`$.
* L'écriture complète s'écrit **$`\mathbf{\overrightarrow{E}=E\;\overrightarrow{e_{\rho}}}`$***en remplaçant sa composante $`E`$ par son expression*.
<!--===============pour partie principale?==============
* Les symétries et invariances de $`\dens`$ ont donné en tout point $`M=M\,(\rho, \varphi, z)`$ de l'espace la direction de $`\overrightarrow{E}`$ sous la forme d'une amplitude $`E`$ et du vecteur unitaire $`\overrightarrow{e_{\rho}}`$ :
* Une surface de Gauss contenant $`M`$ et adaptée a permis de calculer une expression simple pour le flux $`\overrightarrow{E}`$ à travers elle-même.
* La charge totale $`Q_{int}`$ de la surface de Gauss a été évalué pour toute position de $`M`$.
========================================-->
<!-----trop général et confus, si amélioré, pour une partie principale------------
* En genéral, il n'y a pas de fonction mathématique décrivant la densité volumique de charge $`\dens^{3D}`$ sur tout l'espace.
* Il y a un nombre entier $`n`$ de fonctions mathématiques différentes décrivant $`\dens^{3D}`$ et qui correspondent à $`n`$ sous-espaces complémentaires de l'espace $`\mathscr{E}`$.
* Il y a un nombre entier $`n`$ de fonctions mathématiques parfois identiques décrivant $`\dens^{3D}`$ et qui correspondent à $`n`$ sous-espaces complémentaires de l'espace $`\mathscr{E}`$ séparés par des surfaces 2D caractérisées par une densité surfacique $`\dens^{2D}`$ de charge.
----------------------------------------------->
<br>
#### **1 -** Cylindre infini de rayon $`R`$ chargé uniformément en volume
##### Description de $`\dens`$ :
...
...
@@ -191,28 +357,117 @@ $`\Longrightarrow`$ *différentes distributions de charge sont étudiées* dans
* sous-espace $`\mathscr{E}_{int}`$, caractérisé par $`\dens=\dens^{3D}_0`$ et tel que $`\rho\le R`$.
* sous-espace $`\mathscr{E}_{ext}`$, caractérisé par $`\dens=0`$ et tel que $`\rho \gt R`$
à terminer
<!--Cela peu paraître inutile car évident pour les professeurs, mais leurs cerveaux ont eu des années pour intégrer cela. La non conscience qu'il faille considérer différents cas selon la position du point M pour le calcul de $`Q_{int}`$ (que cela soit par manque de visualisation ou sous l'effet du stress d'un examen) est une cause non négligeable d'erreurs. D'où la volonté ici d'emphaser ce point en parlant de sous-espaces.--->