Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
18a76890
Commit
18a76890
authored
Sep 27, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
269f4e37
Pipeline
#13556
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
75 deletions
+77
-75
cheatsheet.fr.md
...70.combinaisons-of-operators/20.overview/cheatsheet.fr.md
+77
-75
No files found.
12.temporary_ins/08.grad-div-rot/70.combinaisons-of-operators/20.overview/cheatsheet.fr.md
View file @
18a76890
...
@@ -91,7 +91,7 @@ visible: false
...
@@ -91,7 +91,7 @@ visible: false
*
Exprimée en coordonnées cartésiennes, l'équation d'onde s'écrit :
*
Exprimée en coordonnées cartésiennes, l'équation d'onde s'écrit :
<br>
<br>
$
`\left(\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}+\dfrac{\partial^2 f}{\partial z^2}\right)-\dfrac{1}{\mathscr{v}^2}\dfrac{\partial^2 f}{\partial t^2}=0`
$
$
`\left(\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}+\dfrac{\partial^2 f}{\partial z^2}\right)-\dfrac{1}{\mathscr{v}^2}\dfrac{\partial^2 f}{\partial t^2}=0`
$
<br>
<br>
l'expression du laplacien en coordonnées cartésienne étant :
l'expression du laplacien en coordonnées cartésienne étant :
<br>
<br>
...
@@ -100,12 +100,12 @@ visible: false
...
@@ -100,12 +100,12 @@ visible: false
*
Cherchons les coordonnées cartésiennes du premier terme, $
`\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)`
$
*
Cherchons les coordonnées cartésiennes du premier terme, $
`\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)`
$
$
`\color{blue}{div\,\overrightarrow{U}=\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}}`
$
$
`\color{blue}{div\,\overrightarrow{U}=\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}}`
$
*
La divergence d'un champ vectoriel est un champ scalaire.
*
La divergence d'un champ vectoriel est un champ scalaire.
Le gradient d'un champ scalaire $
`f`
$ est le champ vectoriel, qui s'exprime en coordonnées cartésiennes :
Le gradient d'un champ scalaire $
`f`
$ est le champ vectoriel, qui s'exprime en coordonnées cartésiennes :
$
`\overrightarrow{grad}\,f=\left(
$
`\overrightarrow{grad}\,f=\left(
\begin{array}{l}
\begin{array}{l}
\dfrac{\partial f}{\partial x}\\
\dfrac{\partial f}{\partial x}\\
\dfrac{\partial f}{\partial y}\\
\dfrac{\partial f}{\partial y}\\
...
@@ -133,62 +133,62 @@ $`\quad = \left(
...
@@ -133,62 +133,62 @@ $`\quad = \left(
\end{array}\right)`
$
\end{array}\right)`
$
*
Cherchons les coordonnées cartésiennes du deuxième terme,
*
$
`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{E
}\big)`
$
*
Cherchons les coordonnées cartésiennes du deuxième terme,
$
`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U
}\big)`
$
$
`\color{blue}{\overrightarrow{rot}\,\overrightarrow{
E
}=
$
`\color{blue}{\overrightarrow{rot}\,\overrightarrow{
U
}=
\left(\begin{array}{l}
\left(\begin{array}{l}
\dfrac{\partial
E_z}{\partial y}-\dfrac{\partial E
_y}{\partial z}\\
\dfrac{\partial
U_z}{\partial y}-\dfrac{\partial U
_y}{\partial z}\\
\dfrac{\partial
E_x}{\partial z}-\dfrac{\partial E
_z}{\partial x}\\
\dfrac{\partial
U_x}{\partial z}-\dfrac{\partial U
_z}{\partial x}\\
\dfrac{\partial
E_y}{\partial x}-\dfrac{\partial E
_x}{\partial y}
\dfrac{\partial
U_y}{\partial x}-\dfrac{\partial U
_x}{\partial y}
\end{array}\right)}`
$
\end{array}\right)}`
$
$
`\overrightarrow{rot}\big(\color{blue}{\overrightarrow{rot}\,\overrightarrow{
E
}\big)}`
$
$
`\overrightarrow{rot}\big(\color{blue}{\overrightarrow{rot}\,\overrightarrow{
U
}\big)}`
$
$
`\quad =
$
`\quad =
\left[\begin{array}{l}
\left[\begin{array}{l}
\dfrac{\partial}{\partial y}\left(
\dfrac{\partial}{\partial y}\left(
\color{blue}{\dfrac{\partial
E_y}{\partial x}-\dfrac{\partial E
_x}{\partial y}}
\color{blue}{\dfrac{\partial
U_y}{\partial x}-\dfrac{\partial U
_x}{\partial y}}
\right)
\right)
-\dfrac{\partial}{\partial z}\left(
-\dfrac{\partial}{\partial z}\left(
\color{blue}{\dfrac{\partial
E_x}{\partial z}-\dfrac{\partial E
_z}{\partial x}}
\color{blue}{\dfrac{\partial
U_x}{\partial z}-\dfrac{\partial U
_z}{\partial x}}
\right)\\
\right)\\
\dfrac{\partial}{\partial z}\left(
\dfrac{\partial}{\partial z}\left(
\color{blue}{\dfrac{\partial
E_z}{\partial y}-\dfrac{\partial E
_y}{\partial z}}
\color{blue}{\dfrac{\partial
U_z}{\partial y}-\dfrac{\partial U
_y}{\partial z}}
\right)
\right)
-\dfrac{\partial}{\partial x}\left(
-\dfrac{\partial}{\partial x}\left(
\color{blue}{\dfrac{\partial
E_y}{\partial x}-\dfrac{\partial E
_x}{\partial y}}
\color{blue}{\dfrac{\partial
U_y}{\partial x}-\dfrac{\partial U
_x}{\partial y}}
\right)\\
\right)\\
\dfrac{\partial}{\partial x}\left(
\dfrac{\partial}{\partial x}\left(
\color{blue}{\dfrac{\partial
E_x}{\partial z}-\dfrac{\partial E
_z}{\partial x}}
\color{blue}{\dfrac{\partial
U_x}{\partial z}-\dfrac{\partial U
_z}{\partial x}}
\right)
\right)
-\dfrac{\partial}{\partial y}\left(
-\dfrac{\partial}{\partial y}\left(
\color{blue}{\dfrac{\partial
E_z}{\partial y}-\dfrac{\partial E
_y}{\partial z}}
\color{blue}{\dfrac{\partial
U_z}{\partial y}-\dfrac{\partial U
_y}{\partial z}}
\right)\end{array}\right]`
$
\right)\end{array}\right]`
$
Nous obtenons alors :
Nous obtenons alors :
$
`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
E
}\big)`
$
$
`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
U
}\big)`
$
$
`\quad =
$
`\quad =
\left(\begin{array}{l}
\left(\begin{array}{l}
\dfrac{\partial^2
E
_y}{\partial y\,\partial x}
\dfrac{\partial^2
U
_y}{\partial y\,\partial x}
-\dfrac{\partial^2
E
_x}{\partial y^2}
-\dfrac{\partial^2
U
_x}{\partial y^2}
-\dfrac{\partial^2
E
_x}{\partial z^2}
-\dfrac{\partial^2
U
_x}{\partial z^2}
+\dfrac{\partial^2
E
_z}{\partial z\,\partial x} \\
+\dfrac{\partial^2
U
_z}{\partial z\,\partial x} \\
\dfrac{\partial^2
E
_z}{\partial z\,\partial y}
\dfrac{\partial^2
U
_z}{\partial z\,\partial y}
-\dfrac{\partial^2
E
_y}{\partial z^2}
-\dfrac{\partial^2
U
_y}{\partial z^2}
-\dfrac{\partial^2
E
_y}{\partial x^2}
-\dfrac{\partial^2
U
_y}{\partial x^2}
+\dfrac{\partial^2
E
_x}{\partial x\,\partial y} \\
+\dfrac{\partial^2
U
_x}{\partial x\,\partial y} \\
\dfrac{\partial^2
E
_y}{\partial x\,\partial z}
\dfrac{\partial^2
U
_y}{\partial x\,\partial z}
-\dfrac{\partial^2
E
_x}{\partial x^2}
-\dfrac{\partial^2
U
_x}{\partial x^2}
-\dfrac{\partial^2
E
_z}{\partial y^2}
-\dfrac{\partial^2
U
_z}{\partial y^2}
+\dfrac{\partial^2
E
_z}{\partial y\,\partial z} \\
+\dfrac{\partial^2
U
_z}{\partial y\,\partial z} \\
\end{array}\right)`
$
\end{array}\right)`
$
il reste simplement à combiner les résultats :
il reste simplement à combiner les résultats :
$
`\overrightarrow{grad}\big(div\;\overrightarrow{
E
}\big)
$
`\overrightarrow{grad}\big(div\;\overrightarrow{
U
}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
E
}\big)`
$
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
U
}\big)`
$
$
`\quad = \left(
$
`\quad = \left(
\begin{array}{l}
\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
...
@@ -197,38 +197,38 @@ $`\quad = \left(
...
@@ -197,38 +197,38 @@ $`\quad = \left(
\end{array}\right)`
$
\end{array}\right)`
$
$
`\quad - \quad
$
`\quad - \quad
\left(\begin{array}{l}
\left(\begin{array}{l}
\dfrac{\partial^2
E
_y}{\partial y\,\partial x}
\dfrac{\partial^2
U
_y}{\partial y\,\partial x}
-\dfrac{\partial^2
E
_x}{\partial y^2}
-\dfrac{\partial^2
U
_x}{\partial y^2}
-\dfrac{\partial^2
E
_x}{\partial z^2}
-\dfrac{\partial^2
U
_x}{\partial z^2}
+\dfrac{\partial^2
E
_z}{\partial z\,\partial x} \\
+\dfrac{\partial^2
U
_z}{\partial z\,\partial x} \\
\dfrac{\partial^2
E
_z}{\partial z\,\partial y}
\dfrac{\partial^2
U
_z}{\partial z\,\partial y}
-\dfrac{\partial^2
E
_y}{\partial z^2}
-\dfrac{\partial^2
U
_y}{\partial z^2}
-\dfrac{\partial^2
E
_y}{\partial x^2}
-\dfrac{\partial^2
U
_y}{\partial x^2}
+\dfrac{\partial^2
E
_x}{\partial x\,\partial y} \\
+\dfrac{\partial^2
U
_x}{\partial x\,\partial y} \\
\dfrac{\partial^2
E
_y}{\partial x\,\partial z}
\dfrac{\partial^2
U
_y}{\partial x\,\partial z}
-\dfrac{\partial^2
E
_x}{\partial x^2}
-\dfrac{\partial^2
U
_x}{\partial x^2}
-\dfrac{\partial^2
E
_z}{\partial y^2}
-\dfrac{\partial^2
U
_z}{\partial y^2}
+\dfrac{\partial^2
E
_z}{\partial y\,\partial z} \\
+\dfrac{\partial^2
U
_z}{\partial y\,\partial z} \\
\end{array}\right)`
$
\end{array}\right)`
$
$
`\quad = \left(\begin{array}{l}
$
`\quad = \left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\quad\quad - \dfrac{\partial^2
E
_y}{\partial y\,\partial x}
\quad\quad - \dfrac{\partial^2
U
_y}{\partial y\,\partial x}
+\dfrac{\partial^2
E
_x}{\partial y^2}
+\dfrac{\partial^2
U
_x}{\partial y^2}
+\dfrac{\partial^2
E
_x}{\partial z^2}
+\dfrac{\partial^2
U
_x}{\partial z^2}
-\dfrac{\partial^2
E
_z}{\partial z\,\partial x} \\
-\dfrac{\partial^2
U
_z}{\partial z\,\partial x} \\
\\
\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\quad\quad - \dfrac{\partial^2
E
_z}{\partial z\,\partial y}
\quad\quad - \dfrac{\partial^2
U
_z}{\partial z\,\partial y}
+\dfrac{\partial^2
E
_y}{\partial z^2}
+\dfrac{\partial^2
U
_y}{\partial z^2}
+\dfrac{\partial^2
E
_y}{\partial x^2}
+\dfrac{\partial^2
U
_y}{\partial x^2}
-\dfrac{\partial^2
E
_x}{\partial x\,\partial y} \\
-\dfrac{\partial^2
U
_x}{\partial x\,\partial y} \\
\\
\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\quad\quad - \dfrac{\partial^2
E
_y}{\partial x\,\partial z}
\quad\quad - \dfrac{\partial^2
U
_y}{\partial x\,\partial z}
+\dfrac{\partial^2
E
_x}{\partial x^2}
+\dfrac{\partial^2
U
_x}{\partial x^2}
+\dfrac{\partial^2
E
_z}{\partial y^2}
+\dfrac{\partial^2
U
_z}{\partial y^2}
-\dfrac{\partial^2
E
_z}{\partial y\,\partial z} \\
-\dfrac{\partial^2
U
_z}{\partial y\,\partial z} \\
\end{array}\right)`
$
\end{array}\right)`
$
*
L'ordre de dérivation n'important pas,
*
L'ordre de dérivation n'important pas,
...
@@ -236,44 +236,46 @@ $`\quad = \left(\begin{array}{l}
...
@@ -236,44 +236,46 @@ $`\quad = \left(\begin{array}{l}
nous remarquons alors que toutes les dérivées partielles du second ordre correspondant à
nous remarquons alors que toutes les dérivées partielles du second ordre correspondant à
des termes croisés de coordonnées s'annulent :
des termes croisés de coordonnées s'annulent :
$
`\overrightarrow{grad}\big(div\;\overrightarrow{
E
}\big)
$
`\overrightarrow{grad}\big(div\;\overrightarrow{
U
}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
E
}\big)`
$
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
U
}\big)`
$
$
`\require{cancel}\quad = \left(\begin{array}{l}
$
`\require{cancel}\quad = \left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\color{blue}{\cancel{\dfrac{\partial^2 U_y}{\partial x\, \partial y}}}+\color{blue}{\cancel{\dfrac{\partial^2 U_z}{\partial x \,\partial z}}}\\
\dfrac{\partial^2 U_x}{\partial x^2}+\color{blue}{\cancel{\dfrac{\partial^2 U_y}{\partial x\, \partial y}}}+\color{blue}{\cancel{\dfrac{\partial^2 U_z}{\partial x \,\partial z}}}\\
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2
E
_y}{\partial y\,\partial x}}}
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2
U
_y}{\partial y\,\partial x}}}
+\dfrac{\partial^2
E
_x}{\partial y^2}
+\dfrac{\partial^2
U
_x}{\partial y^2}
+\dfrac{\partial^2
E
_x}{\partial z^2}
+\dfrac{\partial^2
U
_x}{\partial z^2}
-\color{blue}{\cancel{\dfrac{\partial^2
E
_z}{\partial z\,\partial x}}} \\
-\color{blue}{\cancel{\dfrac{\partial^2
U
_z}{\partial z\,\partial x}}} \\
\\
\\
\color{blue}{\cancel{\dfrac{\partial^2 U_x}{\partial y \,\partial x}}}+\dfrac{\partial^2 U_y}{\partial y^2}+\color{blue}{\cancel{\dfrac{\partial^2 U_z}{\partial y \,\partial z}}}\\
\color{blue}{\cancel{\dfrac{\partial^2 U_x}{\partial y \,\partial x}}}+\dfrac{\partial^2 U_y}{\partial y^2}+\color{blue}{\cancel{\dfrac{\partial^2 U_z}{\partial y \,\partial z}}}\\
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2
E
_z}{\partial z\,\partial y}}}
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2
U
_z}{\partial z\,\partial y}}}
+\dfrac{\partial^2
E
_y}{\partial z^2}
+\dfrac{\partial^2
U
_y}{\partial z^2}
+\dfrac{\partial^2
E
_y}{\partial x^2}
+\dfrac{\partial^2
U
_y}{\partial x^2}
-\color{blue}{\cancel{\dfrac{\partial^2
E
_x}{\partial x\,\partial y}}} \\
-\color{blue}{\cancel{\dfrac{\partial^2
U
_x}{\partial x\,\partial y}}} \\
\\
\\
\color{blue}{\cancel{\dfrac{\partial^2 U_x}{\partial z \,\partial x}}}+\color{blue}{\cancel{\dfrac{\partial^2 U_y}{\partial z \,\partial y}}}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\color{blue}{\cancel{\dfrac{\partial^2 U_x}{\partial z \,\partial x}}}+\color{blue}{\cancel{\dfrac{\partial^2 U_y}{\partial z \,\partial y}}}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2
E
_y}{\partial x\,\partial z}}}
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2
U
_y}{\partial x\,\partial z}}}
+\dfrac{\partial^2
E
_x}{\partial x^2}
+\dfrac{\partial^2
U
_x}{\partial x^2}
+\dfrac{\partial^2
E
_z}{\partial y^2}
+\dfrac{\partial^2
U
_z}{\partial y^2}
-\color{blue}{\cancel{\dfrac{\partial^2
E
_z}{\partial y\,\partial z}}} \\
-\color{blue}{\cancel{\dfrac{\partial^2
U
_z}{\partial y\,\partial z}}} \\
\end{array}\right)`
$
\end{array}\right)`
$
*
Au total nous obtenons l'expression simple :
*
Au total nous obtenons l'expression simple :
**
$
`\overrightarrow{grad}\big(div\;\overrightarrow{
E
}\big)
**
$
`\overrightarrow{grad}\big(div\;\overrightarrow{
U
}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
E
}\big)`
$
**
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{
U
}\big)`
$
**
**
$
`\quad =
**
$
`\quad =
\left(\begin{array}{l}
\left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}\\
\dfrac{\partial^2 U_x}{\partial x^2}
+\dfrac{\partial^2 U_x}{\partial y^2}+\dfrac{\partial^2 U_x}{\partial z^2}
\\
\dfrac{\partial^2 U_y}{\partial
y
^2}\\
\dfrac{\partial^2 U_y}{\partial
x^2}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_y}{\partial z
^2}\\
\dfrac{\partial^2 U_z}{\partial
z^2}\\
\dfrac{\partial^2 U_z}{\partial
x^2}+\dfrac{\partial^2 U_z}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial z^2}
\end{array}\right)`
$
**
\end{array}\right)`
$
**
Cette combinaison particulière d'opérateurs $
`\overrightarrow{grad}`
$, $
`\overrightarrow{rot}`
$ et $
`div`
$
Cette combinaison particulière d'opérateurs $
`\overrightarrow{grad}`
$, $
`\overrightarrow{rot}`
$ et $
`div`
$
constitue la
**définition de l'opérateur Laplacien vectoriel**
:
constitue la
**définition de l'opérateur Laplacien vectoriel**
:
**
$
`\large{\overrightarrow{\Delta}=\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)
**
$
`\large{\overrightarrow{\Delta}=\overrightarrow{grad}\big(div\;\overrightarrow{U}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{E}\big)}`
$
**
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)}`
$
**
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment