Commit 1a6a3326 authored by Claude Meny's avatar Claude Meny

suite

parent 1c0477f8
Pipeline #557 failed with stage
in 21 seconds
...@@ -132,7 +132,7 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center ...@@ -132,7 +132,7 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center
\- **$`n_{eme}`$ : refractive index of the medium of the emergent light**. \- **$`n_{eme}`$ : refractive index of the medium of the emergent light**.
* 1 arrow : indicates the *direction of light propagation* * 1 arrow : indicates the *direction of light propagation*
*
![](dioptre-1.gif) ![](dioptre-1.gif)
...@@ -148,14 +148,16 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center ...@@ -148,14 +148,16 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center
You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previously calculated $`\overline{SA_{ima}}`$, so you can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$. You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previously calculated $`\overline{SA_{ima}}`$, so you can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$.
! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :* ! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting
!surface are obtained by rewriting these equations for a spherical refracting surface in the limit when
! $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :*
! !
! * *conjuction equation :*&nbsp;&nbsp; $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$ &nbsp;&nbsp; (equ.3) ! * *conjuction equation :*&nbsp;&nbsp; $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$ &nbsp;&nbsp; (equ.3)
! !
! * *transverse magnification equation :*&nbsp;&nbsp; $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ ! * *transverse magnification equation :*&nbsp;&nbsp; $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$
&nbsp;&nbsp; (equ.2, unchanged)<br><br> &nbsp;&nbsp; (equ.2, unchanged)<br><br>
but (equ.3) gives $`\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}=\dfrac{n_{inc}}{n_{eme}}`$.<br> ! but (equ.3) gives $`\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}=\dfrac{n_{inc}}{n_{eme}}`$.<br>
Copy this result into (equ.2) leads to $`\overline{M_T}=+1`$. ! Copy this result into (equ.2) leads to $`\overline{M_T}=+1`$.
#### Graphical study #### Graphical study
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment