Commit 1a70b564 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 9c3e9ca5
Pipeline #15607 canceled with stage
...@@ -57,7 +57,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -57,7 +57,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
* Son amplitude est : * Son amplitude est :
$`\begin{align} A_{onde résult.} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\ $`\begin{align} A_{onde résult.} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\
&\\ &\\
&=\sqrt{2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)} &=\sqrt{2\,A\cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}\right\}\Rightarrow\\
cos(a)cos(a)=cos^2(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]frac{1}{2}[1 + cos(2a)]}
\end{align}`$ \end{align}`$
@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment