Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
1cfe8b75
Commit
1cfe8b75
authored
Aug 29, 2020
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
9f8ae004
Pipeline
#2891
failed with stage
in 23 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
1 deletion
+15
-1
textbook.fr.md
...ent/04.reference-frames-coordinate-systems/textbook.fr.md
+15
-1
No files found.
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md
View file @
1cfe8b75
...
...
@@ -120,7 +120,21 @@ a line segment of length $`\Delta l_x = \Delta x`$. When $`x + \Delta x`$ tends
towards $
`0`
$, the infinitesimal length $
`dl_x`
$ covered by the point $
`M`
$ is :
<br>
<br>
$
`\displaystyle dx=\lim_{\Delta x\rightarrow 0 \\ \Delta x>0} \Delta x`
$
$
`\quad\Longrightarrow\quad dl_x=dx`
$.
<br>
<!--\text{élément scalaire d'arc : }-->
<br>
de même : $
`dl_y=dy`
$ et $
`dl_z=dz`
$.
<br>
tambien / de même / similarly : $
`dl_y=dy`
$ et $
`dl_z=dz`
$.
*
**N3-N4**
[
ES
]
Cuando solo la coordenada $
`x`
$ de un punto $
`M(x,y,z)`
$ varía
nfinitesimalmente entre los valores $
`x`
$ y $
`x+dx`
$, el vector de desplazamiento
$
`\overrightarrox{MM'}=\delta\overrightarrox{OM}_x`
$ del punto $
`M`
$ el vector
tangente a la trayectoria en el punto $
`M`
$ que se escribe :
<br>
[
FR
]
Lorsque seule la coordonnées $
`x`
$ d'un point $
`M(x,y,z)`
$ varie de façon
infinitésimale entre les valeurs $
`x`
$ et $
`x+dx`
$, le vecteur déplacement
$
`\overrightarrox{MM'}=\delta\overrightarrox{OM}_x`
$ du point $
`M`
$ est le vecteur
tangent à la trajectoire au point $
`M`
$ qui sc'écrit :
<br>
When only the $
`x`
$ coordinate of a point $
`M(x,y,z)`
$ varies infinitesimally between
the values $
`x`
$ and $
`x+dx`
$, the displacement vector
$
`\overrightarrox{MM'}=\delta\overrightarrox{OM}_x`
$ of the point $
`M`
$ is the
tangent vector to the trajectory at point $
`M`
$. It writes :
<br>
Lorsque seule la coordonnées $
`x`
$ s'accroit de la quantité $
`dx>0`
$, le vecteur unitaire
$
`\vec{e_x}`
$ qui indique le sens du déplacement s'écrit :
<br>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment