Commit 1ef4109a authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 3444e151
Pipeline #13984 canceled with stage
...@@ -508,46 +508,34 @@ $`\overrightarrow{e_{\rho}}=\;\;\,\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\ ...@@ -508,46 +508,34 @@ $`\overrightarrow{e_{\rho}}=\;\;\,\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\
$`\overrightarrow{e_{\theta}}=-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}`$ $`\overrightarrow{e_{\theta}}=-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}`$
$`\dfrac{d\overrightarrow{e_{\rho}}}{dt}=\dfrac{d}{dt}\big(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\big)`$
$`\quad=\Big[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\dfrac{d\overrightarrow{e_z}}{dt}\Big]`$
$`\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\dfrac{d\overrightarrow{e_z}}{dt}\bigg]`$
$`\quad=\dfrac{d\cos\theta}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_x}`$
$`\quad+\dfrac{d(-\sin\theta)}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_z}`$
$`\quad=\omega\;\Big(-\sin\theta\;\overrightarrow{e_x}+\omega\cos\theta\;\overrightarrow{e_z}\Big)`$
$`\quad=\omega\;\overrightarrow{e_{\theta}}`$
$`\begin{align} $`\begin{align}
\dfrac{d\overrightarrow{e_{\rho}}}{dt}&=\dfrac{d}{dt}\big(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\big)\\ \dfrac{d\overrightarrow{e_{\rho}}}{dt}&=\dfrac{d}{dt}\big(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\big)\\
\\ \\
&=\Big[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\dfrac{d\overrightarrow{e_z}}{dt}\Big]\\ &=\Big[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\Big]\\
&\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\dfrac{d\overrightarrow{e_z}}{dt}\bigg]\\ &\quad\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d\cos\theta}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_x} &=\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x}
+\dfrac{d(-\sin\theta)}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_z}\\ +\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\Big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\Big)\\ &=\omega\;\Big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\Big)\\
\\ \\
&=\omega\;\overrightarrow{e_{\theta}} &=\omega\;\overrightarrow{e_{\theta}}
\end{align}`$ \end{align}`$
$`\begin{align} $`\begin{align}
\dfrac{d\overrightarrow{e_{\rho}}}{dt}&=\dfrac{d}{dt}\big(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\big)\\ \dfrac{d\overrightarrow{e_{\theta}}}{dt}&=\dfrac{d}{dt}\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\
\\ \\
&=\Big[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\Big]\\ &=\Big[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\Big]\\
&\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\bigg]\\ &\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x} &=\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x}
+\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\ +\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\Big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\Big)\\ &=\omega\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\
\\ \\
&=\omega\;\overrightarrow{e_{\theta}} &=-\omega\;\overrightarrow{e_{\rho}}
\end{align}`$ \end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment