Commit 201c1209 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 58931599
Pipeline #13541 canceled with stage
......@@ -80,9 +80,8 @@ $`\quad =
$`\color{blue}{div\,\overrightarrow{U}=\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}}`$
      La divergence d'un champ vectoriel est un champ scalaire.
      Le gradient d'un champ scalaire $`f`$ est le champ vectoriel,
      qui s'exprime en coordonnées cartésiennes :
* La divergence d'un champ vectoriel est un champ scalaire.
Le gradient d'un champ scalaire $`f`$ est le champ vectoriel, qui s'exprime en coordonnées cartésiennes :
$`\overrightarrow{grad}\,f=\left(
\begin{array}{l}
......@@ -96,7 +95,7 @@ $`\overrightarrow{grad}\,f=\left(
$`\overrightarrow{grad}\big(div\,\overrightarrow{U}\big)`$
$`\quad = \left(
\begin{array}{l}
\dfrac{\partial}{\partial x}\left( \color{blue}{\dfrac{\partial U_x}{\partial x}} \right)\\
\dfrac{\partial}{\partial y}\left( \color{blue}{\dfrac{\partial U_y}{\partial y}} \right)\\
\dfrac{\partial}{\partial z}\left( \color{blue}{\dfrac{\partial U_z}{\partial z}} \right)
\dfrac{\partial}{\partial x}\left( \color{blue}{\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}} \right)\\
\dfrac{\partial}{\partial y}\left( \color{blue}{\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}} \right)\\
\dfrac{\partial}{\partial z}\left( \color{blue}{\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}} \right)
\end{array}\right)`$
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment