Commit 202406ec authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 78424ac9
Pipeline #15928 canceled with stage
......@@ -1675,18 +1675,15 @@ $`= 2\,A\,\,cos\big(\Delta \omega_{1-2} t + \varphi_B) \times cos\,(\omega_{moy}
**$`\mathbf{U(t)=U(t+T)}`$**
<br>
$`\begin{align}
\quad\Longleftrightarrow &cos^2\left(2\pi\dfrac{\nu_1 - \nu_2}{2} t + \varphi_B\right)\\
&\quad\quad\quad = cos^2\left(2\pi\dfrac{\nu_1 - \nu_2}{2} (t + \mathbf{\color{blue}{T}}) + \varphi_B\right)
\end{align)`$
<br>
$`\begin{align}\quad\Longleftrightarrow &cos^2\left(2\pi\dfrac{\nu_1 - \nu_2}{2} t + \varphi_B\right)\\
&\quad\quad\quad = cos^2\left(2\pi\dfrac{\nu_1 - \nu_2}{2} (t + \mathbf{\color{blue}{T}}) + \varphi_B\right)\end{align)`$
\quad\Longleftrightarrow &cos^2\left(2\pi\dfrac{\nu_1 - \nu_2}{2} t + \varphi_B\right) \\
&\quad\quad\quad = cos^2\left(2\pi\dfrac{\nu_1 - \nu_2}{2} (t + \color{blue}{\mathbf{T}}) + \varphi_B\right)
\end{align}`$
<br>
$`\begin{align}\quad\Longleftrightarrow & cos^2\big(\pi (\nu_1 - \nu_2) t + \varphi_B\big)\\
&\quad\quad\quad =cos^2\big(\underbrace{\pi (\nu_1 - \nu_2) t + \varphi_B \pm \mathbf{\color{blue}{\pi}}}_{
\color{blue}{+\;\Longleftrightarrow \nu_1 - \nu_2\gt 0 \\ -\;\Longleftrightarrow \nu_1 - \nu_2\gt 0}}\big)\end{align)`$
\color{blue}{+\;\Longleftrightarrow \nu_1 - \nu_2\gt 0 \\ -\;\Longleftrightarrow \nu_1 - \nu_2\gt 0}}\big)\end{align}`$
<br>
$`\quad\Longleftrightarrow 2pi |\,\nu_1 - \nu_2\,| T = \pi`$
$`\quad\Longleftrightarrow \pi\, |\,\nu_1 - \nu_2\,|\, T = \pi`$
<br>
**$`\quad\Longleftrightarrow \mathbf{T = |\,\nu_1 - \nu_2\,|}`$**
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment