Commit 22134cfa authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 9e3a5bb7
Pipeline #16410 canceled with stage
......@@ -70,46 +70,34 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$.
*$`\mathbf{M = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}}`$*
**$`\mathbf{e^{\,M}}`$** $`\; = \sum_{n=0}^{+\infty}\dfrac{M^n}{n!}`$
**$`\mathbf{e^{\,M}}`$** $`\displaystyle\; = \sum_{n=0}^{+\infty}\dfrac{M^n}{n!}`$
<br>
$`\begin{align} \quad\quad & = +\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
+\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
$`\begin{align} \quad\;\; & =\;\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\
& \quad\quad \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
& \quad\;\; \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
+\cdots \\
& \\
& \quad\quad \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
& \quad\;\; \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
\end{align}`$
<br>
<br>
$`\begin{align} \quad\quad & = +\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
+\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
$`\begin{align} \quad\;\; & = \;\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\
& \quad\quad \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2 \\ \end{pmatrix}
& \quad\;\; \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2 \\ \end{pmatrix}
+\cdots \\
& \\
& \quad\quad \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k \\ \end{pmatrix} + \cdots
& \quad\\;\; \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k \\ \end{pmatrix} + \cdots
\end{align}`$
<br>
<br>
$`\quad\;\; & = \;\begin{pmatrix} \dfrac{1}{n!}\sum_{n=0}^{+\infty}\lamnda_1^n & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \dfrac{1}{n!}\sum_{n=0}^{+\infty}\lamnda_m^n \\ \end{pmatrix}`$
$`\begin{align}\quad\quad\quad & = \sum_{n=0}^{+\infty}\dfrac{M^n}{n!} \\
& \\
& = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\
& \quad\quad \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
+\cdots \\
& \\
& \quad\quad \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
\end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment