Commit 9e3a5bb7 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 56825aff
Pipeline #16409 canceled with stage
......@@ -66,22 +66,35 @@ $`e^{\,M}`$ matrice de dimension $`m\times m`$.
$`M^0 = I_m`$ matrice identité de dimension $`m\times m`$.
$`M`$ est diagonale :
##### $`M`$ est diagonale :
$`M = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}`$
*$`\mathbf{M = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}}`$*
$`e^{\,M} & = \sum_{n=0}^{+\infty}\dfrac{M^n}{n!}`$
**$`\mathbf{e^{\,M}}`$** $`\; = \sum_{n=0}^{+\infty}\dfrac{M^n}{n!}`$
<br>
$`\begin{align} \quad\quad & = \sum_{n=0}^{+\infty}\dfrac{M^n}{n!} \\
$`\begin{align} \quad\quad & = +\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
+\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\
& = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \quad\quad \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
+\cdots \\
& \\
& \quad\quad \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
\end{align}`$
<br>
<br>
$`\begin{align} \quad\quad & = +\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
+\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\
& \quad\quad\quad \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
& \quad\quad \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2 \\ \end{pmatrix}
+\cdots \\
& \\
& \quad\quad\quad \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
\end{align}`$
& \quad\quad \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k \\ \end{pmatrix} + \cdots
\end{align}`$
<br>
$`\begin{align}\quad\quad\quad & = \sum_{n=0}^{+\infty}\dfrac{M^n}{n!} \\
& \\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment