Commit 231033e0 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 3330e513
Pipeline #15682 canceled with stage
......@@ -301,11 +301,12 @@ RÉSUMÉ
##### L'équivalence des fonctions sinus et cosinus.
$`U(x,t)=A\cdot cos (\omega t - kx + \phi)`$
$`U(x,t)=A\cdot cos\,(\omega t - kx + \phi)`$
$`\; = A\cdot cos \Big(\omega t - kx + \underbrace{ \phi + \dfrac{\pi}{2}}_{\color{blue}{=\;\phi'}} - \dfrac{\pi}{2}\Big)`$
$`\; = A\cdot \Big[\;\underbrace{cos \Big(\omega t - kx + \phi'\Big) - \dfrac{\pi}{2}}_{cos(a-\pi/2})=cos(a)\,cos(\pi/2)+sin(a)\,sin(\pi/2)=sin(a)}\Big]`$
$`\; = A\cdot cos \Big(\omega t - kx + \underbrace{ \phi + \dfrac{\pi}{2}}_{\color{blue}{=\;\phi'}} - \dfrac{\pi}{2}\Big)`$
$`\; = A\cdot \Big[
\;\underbrace{cos \Big(\omega t - kx + \phi'\Big) - \dfrac{\pi}{2}}_{cos(a-\pi/2)=cos(a)\,cos(\pi/2)+sin(a)\,sin(\pi/2)=sin(a)}\Big]`$
<!--\underbrace{ \phi + \dfrac{\pi}{2}}{=\;}- \dfrac{\pi}{2})`$-->
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment