Commit 234e8df1 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent aeb4e132
Pipeline #14021 canceled with stage
......@@ -702,13 +702,13 @@ $`\left.\dfrac{d\theta}{dt}\right\lvert_{t=0}=0=B\omega_0`$
ce qui permet d'écrire la solution particulière correspondante :
$`\theta(t) &= \theta_0\,\cos(\omega_0 t)=\theta_{(t=0)}\times \cos\left(t\sqrt{\dfrac{g}{\mathscr{l}}\right)`$
$`\theta(t) = \theta_0\,\cos(\omega_0 t)=\theta_{(t=0)}\times \cos\left(t\sqrt{\dfrac{g}{\mathscr{l}}}\right)`$
d'où l'on déduit
$`\begin{align}
\left.\dfrac{d\theta}{dt}\right\lvert_{t} &= -\,\omega_0\,\theta_0\,\sin(\omega_0 t) \\
&= -\,\theta_{(t=0)}\times\sqrt{\dfrac{g}{\mathscr{l}}\times\sin\left(t\sqrt{\dfrac{g}{\mathscr{l}}\right)
&= -\,\theta_{(t=0)}\times\sqrt{\dfrac{g}{\mathscr{l}}\times\sin\left(t\sqrt{\dfrac{g}{\mathscr{l}}}\right)
\end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment