Commit 270e6155 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 354e628b
Pipeline #13826 canceled with stage
......@@ -154,6 +154,9 @@ $`\mathcal{S}=\displaystyle\int_{t_1}^{t_2}\mathcal{L}\big(x_i\,,\,\dpt{x}_i\big
$`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}\bigg( \dfrac{\partial\mathcal{L}}{\partial x_i} \delta x_i
+\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \delta \dpt{x}_i\bigg)\,dt`$
$`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}\bigg( \dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
+\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \cdot\delta \dpt{x}_i\bigg)\,dt`$
<details markdown=1>
<summary>intégration par partie du second terme de l'intégrande
</summary>
......@@ -169,10 +172,15 @@ $`\displaystyle\;=\int_{\alpha_1}^{\alpha_2}\dfrac{d (uv)}{d\alpha}\,d\alpha
-\int_{\alpha_1}^{\alpha_2}\dfrac{d u}{d\alpha}\cdot v\,d\alpha`$
</details>
$`\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \delta \dpt{x}_i`$
$`\;=\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\dfrac{d x_i}{dt}`$
<br>
$`\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \ cdot\delta \dpt{x}_i`$
$`\;=\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot\dfrac{d x_i}{dt}`$
$`\quad=\dfrac{d}{dt}\bigg({\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot x_i\bigg)
-\dfrac{d}{dt}\bigg({\partial\mathcal{L}}{\partial \dpt{x}_i}\bigg)\,x_i`$
$`\quad=\dfrac{\partial\mathcal{L}}\,x_i-{\partial \dpt{x}_i}\dfrac{d x_i}{dt}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment