Commit 28a982aa authored by Claude Meny's avatar Claude Meny

Update cheatshhet.fr.md

parent d2ca4976
Pipeline #13040 canceled with stage
...@@ -33,6 +33,7 @@ lessons: ...@@ -33,6 +33,7 @@ lessons:
### Définitions et propriétés<br>**Gradient**<br>**Champs vectoriels conservatifs** ### Définitions et propriétés<br>**Gradient**<br>**Champs vectoriels conservatifs**
<br>
GRADIENT D'UN CHAMP SCALAIRE GRADIENT D'UN CHAMP SCALAIRE
: --- : ---
...@@ -49,12 +50,16 @@ GRADIENT D'UN CHAMP SCALAIRE ...@@ -49,12 +50,16 @@ GRADIENT D'UN CHAMP SCALAIRE
*Expressions du gradient* *Expressions du gradient*
* Coordonnées cartésiennes : Coordonnées cartésiennes :
$`\overrightarrow{grad}\,V=\dfrac{\partial V}{\partial x}\,\overrightarrow{e_x}+\dfrac{\partial V}{\partial y}\,\overrightarrow{e_y}+\dfrac{\partial V}{\partial z}\,\overrightarrow{e_z}`$ $`\begin{align}
* Coordonnées cylindriques : \overrightarrow{grad}\,V &=\dfrac{\partial V}{\partial x}\,\overrightarrow{e_x}+\dfrac{\partial V}{\partial y}\,\overrightarrow{e_y}+\dfrac{\partial V}{\partial z}\,\overrightarrow{e_z}`$ \\
$`\overrightarrow{grad}\,V=\dfrac{\partial V}{\partial \rho}\,\overrightarrow{e_{\rho}}+\dfrac{1}{/rho}\dfrac{\partial V}{\partial \varphi}\,\overrightarrow{e_{\varphi}}+\dfrac{\partial V}{\partial z}\,\overrightarrow{e_z}`$ &=\nabla\,V\\
* Coordonnées sphériques : end{align}`$
$`\overrightarrow{grad}\,V=\dfrac{\partial V}{\partial \rho}\,\overrightarrow{e_{\rho}}+\dfrac{1}{/rho}\,\dfrac{\partial V}{\partial \theta}\,\overrightarrow{e_{\theta}}+\dfrac{1}{/rho\,sin\,\theta}\,\dfrac{\partial V}{\partial \varphi}\,\overrightarrow{e_5\varphi}`$ &nbsp;&nbsp;avec opérateur nabla $`\nabla=\dfrac{\partial}{\partial x}\,\overrightarrow{e_x}+\dfrac{\partial}{\partial y}\,\overrightarrow{e_y}+\dfrac{\partial}{\partial z}\,\overrightarrow{e_z}`$
Coordonnées cylindriques :
$`\overrightarrow{grad}\,V=\dfrac{\partial V}{\partial \rho}\,\overrightarrow{e_{\rho}}+\dfrac{1}{\rho}\,\dfrac{\partial V}{\partial \varphi}\,\overrightarrow{e_{\varphi}}+\dfrac{\partial V}{\partial z}\,\overrightarrow{e_z}`$
Coordonnées sphériques :
$`\overrightarrow{grad}\,V=\dfrac{\partial V}{\partial \rho}\,\overrightarrow{e_{\rho}}+\dfrac{1}{\rho}\,\dfrac{\partial V}{\partial \theta}\,\overrightarrow{e_{\theta}}+\dfrac{1}{\rho\,sin\,\theta}\,\dfrac{\partial V}{\partial \varphi}\,\overrightarrow{e_5\varphi}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment