Commit 2bd4d315 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent ae9be326
Pipeline #10432 canceled with stage
...@@ -113,6 +113,28 @@ $`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha) ...@@ -113,6 +113,28 @@ $`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta) \,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$ \,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,
\left[\cos(a)\cos^2(\alpha)\cos(\theta)
\,-\,\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)
\,-\,\sin(a)\sin^2(\alpha)\,\cos(\theta)
\,+\,\sin(a)\,\cos^2(\alpha)\,\sin(\theta)
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
à vérifier et terminer
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,
\left[\cos(a)\cos^2(\alpha)\cos(\theta)
\,-\,\xcancel{\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)}
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)
\,-\,\sin(a)\sin^2(\alpha)\,\cos(\theta)
\,+\,\xcancel{\sin(a)\,\cos^2(\alpha)\,\sin(\theta)}
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\xcancel{\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)}
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment