Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
2e258edb
Commit
2e258edb
authored
Nov 19, 2019
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.en.md
parent
fc259092
Pipeline
#987
failed with stage
in 21 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
3 additions
and
3 deletions
+3
-3
textbook.en.md
...ourses/intercambio-curso-electromagnetismo/textbook.en.md
+3
-3
No files found.
10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md
View file @
2e258edb
...
...
@@ -724,9 +724,9 @@ $`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \,
\dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`
$
Para la secuela, ¿no deberíamos escribir y establecer mejor desde el principio las ecuaciones de Maxwell
con los vectores de intensidad de campo eléctrico $
`\overrightarrow{E}`
$ y magnético
`\overrightarrow{H}`
$?
con los vectores de intensidad de campo eléctrico $
`\overrightarrow{E}`
$ y magnético
$
`\overrightarrow{H}`
$?
Pour la suite, ne faut-il pas mieux écrire et établir dès le début les équations de Maxwell avec les vecteurs
d'excitation électrique $
`\overrightarrow{E}`
$ et magnétique
`\overrightarrow{H}`
$?
d'excitation électrique $
`\overrightarrow{E}`
$ et magnétique
$
`\overrightarrow{H}`
$?
$
`div\overrightarrow{E}=\dfrac{\rho}{\epsilon_0}`
$
...
...
@@ -762,7 +762,7 @@ Ostrogradsky’s theorem = divergence theorem (= Gauss's theorem) :
for all vectorial field $
`\vec{X}`
$,
$
`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau= \displaystyle\oiint_{S
\leftrightarrow \tau}
\overrightarrow{X}}\cdot\overrightarrow{dS}`
$
$
`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau= \displaystyle\oiint_{S
\leftrightarrow\tau}
\overrightarrow{X}}\cdot\overrightarrow{dS}`
$
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment