Commit 2ef80acf authored by Claude Meny's avatar Claude Meny

Update cheatshhet.fr.md

parent 2ee1c0f7
Pipeline #13069 canceled with stage
...@@ -114,10 +114,12 @@ CHAMP VECTORIEL CONSERVATIF<br>_" du champ vectoriel (conservatif) aux champs sc ...@@ -114,10 +114,12 @@ CHAMP VECTORIEL CONSERVATIF<br>_" du champ vectoriel (conservatif) aux champs sc
La circulation d'un champ vectoriel conservatif le long d'un chemin $`\Gamma`$ La circulation d'un champ vectoriel conservatif le long d'un chemin $`\Gamma`$
$`\mathbf{\displaystyle\int_{M_1}^{M_2}\overrightarrow{X}\cdot\overrightarrow{dl}}=\int_{M_1}^{M_2} \overrightarrow{grad}(\phi)\cdot\overrightarrow{dl}`$ $`\displaystyle\mathbf{\int_{M_1}^{M_2}\overrightarrow{X}\cdot\overrightarrow{dl}}=\int_{M_1}^{M_2} \overrightarrow{grad}(\phi)\cdot\overrightarrow{dl}`$
$`\quad\quad = \displaystyle\int_{M_1}^{M_2} d\phi\mathbf{\;=\phi(M_2)-\phi(M_1)}`$ $`\quad\quad\quad\quad = \displaystyle\int_{M_1}^{M_2} d\phi\mathbf{\;=\phi(M_2)-\phi(M_1)}`$
$`\displaystyle\begin{align}\mathbf{\int_{M_1}^{M_2}\overrightarrow{X}\cdot\overrightarrow{dl}}&=\int_{M_1}^{M_2} \overrightarrow{grad}(\phi)\cdot\overrightarrow{dl}\\
& = \displaystyle\int_{M_1}^{M_2} d\phi\mathbf{\;=\phi(M_2)-\phi(M_1)}
\end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment