Commit 2f692d23 authored by Claude Meny's avatar Claude Meny

Update 12.temporary_ins/44.relativity/30.n3/10.special-relativity/07.coherence/textbook.fr.md

parent c2ea6a89
Pipeline #13901 canceled with stage
......@@ -36,5 +36,52 @@ lessons:
---------------------------------------------
Loi de transformation lorentzienne des positions :
$`\left\{\begin{array}{l}
ct' = \gamma\,(ct-\beta x)\\
x'=\gamma\,(x - \beta c t)\\
y'=y \\
z=z
\end{array}\right.`$
$`\overrightarrow{r}'=\overrightarrow{r}-\overrightarrow{V}\,t`$
Loi de transformation lorentzienne des vitesses :
en cours de rédaction, mà cest encore le cas galiéen :
$`\left\{\begin{array}{l}
dt' = dt \\
\dfrac{dx'}{dt'}=\dfrac{dx}{dt}-V_x \\
\dfrac{dy'}{dt'}=\dfrac{dy}{dt}-V_y \\
\dfrac{dz'}{dt'}=\dfrac{dz}{dt}-V_z
\end{array}\right.`$
$`\quad\Longrightarrow\quad
\left\{\begin{array}{l}
\mathscr{v}_x'=\mathscr{v}_x-V_x \\
\mathscr{v}_y'=\mathscr{v}_y-V_y \\
\mathscr{v}_z'=\mathscr{v}_z-V_z
\end{array}\right.`$
$`\overrightarrow{\mathscr{v}}'=\overrightarrow{\mathscr{v}}-\overrightarrow{V}`$
Loi de transformation galiléenne des accélérations :
$`\left\{\begin{array}{l}
dt' = dt \\
\dfrac{d^2 x'}{dt'^2}=\dfrac{d}{dt}\big(\mathscr{v}_x-V_x\big)=\dfrac{d^2 x}{dt^2} \\
\dfrac{d^2 y'}{dt'^2}=\dfrac{d}{dt}\big(\mathscr{v}_y-V_y\big)=\dfrac{d^2 y}{dt^2} \\
\dfrac{d^2 z'}{dt'^2}=\dfrac{d}{dt}\big(\mathscr{v}_z-V_z\big)=\dfrac{d^2 z}{dt^2} \\
\end{array}\right.`$
$`\quad\Longrightarrow\quad
\left\{\begin{array}{l}
\mathscr{a}_x'=\mathscr{a}_x \\
\mathscr{a}_y'=\mathscr{a}_y \\
\mathscr{a}_z'=\mathscr{a}_z
\end{array}\right.`$
$`\overrightarrow{a}'=\overrightarrow{a}`$
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment